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ABSTRACT

Broadband characterization has recently attracted much attention
from the research community and the general public. Given
this interest and the important business and policy implications
of residential Internet service characterization, recent years have
brought a variety of approaches to profiling Internet services, rang-
ing from Web-based platforms to dedicated infrastructure inside
home networks. We have previously argued that network-intensive
applications provide an almost ideal vantage point for broadband
service characterization at sufficient scale, nearly continuously and
from end users. While we have shown that the approach is indeed
effective at characterization and can enable performance compar-
isons between service providers and geographic regions, a key
unanswered question is how well the performance characteristics
captured by these network-intensive applications can predict the
overall user experience with other applications.

In this paper, using BitTorrent as an example network-intensive
application, we present initial results that demonstrate how to
obtain estimates of bandwidth and latency of a network connection
by leveraging passive monitoring and limited active measurements
from network intensive applications. We then analyze user expe-
rienced web performance under a variety of network conditions
and show how estimated metrics from this network intensive
application can serve as good web performance predictors.

Categories and Subject Descriptors

C.2.2 [Communication Systems Organization]: Computer Com-
munication Networks—Network Protocols; C.2.5 [Communication

Networks]: Local and Wide-Area Networks—
Internet; C.4 [Performance of Systems]: Performance Attributes

General Terms

Experimentation, Performance, Measurement
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Broadband access networks, ISP characterization, Web perfor-
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1. INTRODUCTION
Characterization of broadband Internet services has recently

attracted much attention from consumers, researchers and poli-
cymakers [1, 2, 5–7, 10–14]. Broadband subscription has seen
unprecedented growth over the last few years, with one quarter
of the Internet population being residential broadband subscribers.
Our ability to measure these networks, however, has not kept
pace [3].

In previous work [2] we have argued that network-intensive
applications can provide a nearly ideal vantage point for broadband
characterization. The low equipment and logistical costs of a
software-based approach facilitate large scale deployments that can
capture the diversity of available Internet services. Running inside
an application also enables continuous monitoring, necessary to
witness dynamic changes due to network management policies
(e.g. traffic shaping or oversubscribed networks) and unscheduled
events (e.g. service interruptions). Last, since these vantage points
are provided by end users, it is easier to ensure an objective service
characterization.

While we have shown that this approach is indeed effective
at broadband service characterization and may enable service
comparison across ISPs, a key unanswered question is how well
the performance captured by these network-intensive applications
can predict user perceived performance in other applications (e.g.
Web or VoIP). In this work, we present preliminary work showing
that these network-intensive applications can be leveraged to ac-
curately identify several important metrics of the user’s broadband
connection and estimate a user’s expected web performance.

Using BitTorrent as an example host application, we present
preliminary results that demonstrate how to obtain estimates of
the bandwidth and latency of a network connection by leveraging
passive monitoring and selected active measurements from network
intensive applications (§ 3). Our results show that it is possible to
infer these metrics with high accuracy (§ 4). In the case of latency,
our measurement approach using traceroute probes yields results
comparable to values previously reported [12,14] for several major
ISPs in the United States. We show that 3 hours of BitTorrent usage
(aggregated across sessions) is sufficient to accurately determine
the user’s bandwidth. In this case, we find that the maximum
observed BitTorrent download rate is strongly correlated (r >

0.75) with the maximum download speed reported by the Network
Diagnostic Tool (NDT) [9].

We show that the proposed approach is able to measure settings
in a variety of simulated network environments, varying both last-
mile latency and bandwidth capacity, and that the derived values
can be used to infer page rendering times (§5). We show that
improving both latency and bandwidth can improve overall web
performance – but only to a certain point, past which bandwidth



Application Bandwidth Latency

File transfers Elastic Not sensitive

HD video streaming Need >5 Mbps Need ~<100 ms
Web browsing Sensitive Sensitive

Table 1: Summary of the importance of connection metrics for

several popular applications.

and latency improvements do not result in significantly faster web
page rendering times. We close with a brief discussion of additional
issues (§ 6).

2. BACKGROUND
Broadband characterization is attractive to users, policymakers

and researchers alike; it allows users to evaluate the quality of
service they received, it can inform policymakers of coverage and
available services levels to guide recommendations and legislation,
and it provides researchers with an interesting and challenging
problem domain. Not surprisingly, a number of platforms and
approaches to broadband characterization have been proposed [1,5,
7, 10, 14] and several reports have been made public (e.g. [11, 12]).

Many of these approaches rely heavily on active measurement
for characterization. Active measurement allows for high degree
of control over when, how, and in what context a measurement
experiment is launched. This approach, however, can result in
significant measurement overhead. The increasing adoption of
tiered charging model by ISPs, e.g. with quotas on monthly volume
transferred, make this overhead increasingly important.

Consider Comcast1 or AT&T U-verse,2 for instance, both impos-
ing a 250 GB monthly cap. Based on the traffic volume estimates
for the SamKnows deployment,3 AT&T U-verse users on the
fastest plan (24 Mbps downstream) would consume 146 GB of data
each month – 58% of that user’s quota – to measure the user’s
connection. For subscribers of Comcast’s fastest (105 Mbps) plan,
SamKnows measurements would use 625 GB – 2.5x more than the
user’s monthly quota.4

We have previously argued [2] that network-intensive applica-
tions provide an alternative, low-overhead approach for broadband
characterization at scale, continuously and from end-users. In this
work, we present preliminary work showing that these applications
can be leveraged to accurately estimate several important metrics of
the user’s broadband connection and estimate a user’s expected web
performance. There is a common, well-understood set of low-level
metrics that can characterize the service received by end users. In
this work, we focus on two of them, latency and bandwidth, given
the impact they have on the performance of all network applications
(Tab. 1).

3. METHODOLOGY
Our analysis is based on data contributed by a subset of users

of a BitTorrent plugin as well as additional BitTorrent and web-
performance traces collected in a controlled setting. The following
paragraphs describe both in detail.

1http://xfinity.comcast.net/terms/network/amendment/
2http://www.att.com/esupport/internet/usage.jsp
3http://transition.fcc.gov/cgb/measuringbroadbandreport/technical_
appendix/Technical_Appendix_Full.pdf
4These values were estimated using the bandwidth usage values
listed in the SamKnows technical report (footnote 3).

3.1 Wide-area BitTorrent traces
A large part of our data set is comprised of traces of BitTorrent

activity collected by our previously released extensions for the
Vuze BitTorrent client [15]. We use this data to evaluate the
feasibility of using a network-intensive application to estimate
metrics of a user’s Internet connection across a wide range of
scenarios.

This data set comprises a combination of passive and limited
active measurements. With the user’s permission, each participat-
ing client reports anonymized traces that include snapshots of total
BitTorrent bandwidth use at 30-second intervals and the results
of active measurements such as pings, traceroutes, and Network
Diagnostic Tool (NDT) probes [9].

The traces used were collected from a subset of users during
February and March 2012. Specifically, the traces we analyze
for this work come from 6188 unique installations reporting from
134 countries and 1737 ASes. Users of these extensions are pre-
dominantly located in residential broadband networks. All major
access technologies are represented, including DSL, cable, fiber,
satellite and 3G/4G wireless, with a wide range of access la-
tency (up to 560 ms round-trip-time) and bandwidth (512 Kbps to
>100 Mbps) [8].

3.2 Controlled experiments
We also conducted experiments in a controlled setting to evaluate

the accuracy of our connection metric estimates and to capture
page-rendering time as a measure of user-perceived performance.

Starting with a wired Ethernet connection to a well-provisioned
university network (100 Mbps capacity, <2 ms latency to google.
com), we used the ipfw and dummynet traffic shaper tools
to emulate access links with varying characteristics: link latency
and bandwidth. For each condition tested, we first collected a
BitTorrent session trace while downloading a well-seeded torrent
(so that the aggregate upload capacity of peers in the swarm would
be able to saturate our downstream connection). This part of the
experiment uses the same methodology as our wide-area BitTorrent
traces, enabling us to determine the accuracy of the metrics we infer
from users in the wild.

For each condition, we also evaluated the user-perceived web
performance in Firefox v.11 over HTTP5 for the 20 most popular
websites in the US.6 Specifically, we instrumented the browser
using Selenium7 and Firebug8 to measure page rendering time as a
proxy for user-perceived performance. These traces include HTTP
archives (HAR) which can also measure time to first byte and page
loading time.

Every time before fetching a page, we cleared the DNS and web
object caches in the host and browser. To prevent the browser
from using data in the local content cache, we created a new user
profile in the browser for each page fetch. To ensure that the
local DNS caches were cleared, we flushed the host’s DNS cache
(dscacheutil -flushcache). We loaded each page twice
in close succession; the first request primes the remote caches of
the DNS resolver, web caches, and content delivery replica servers.
We use the timing statistics from the second request in our analysis.
In general, we find no significant difference between the first and
second page render times. We attribute this to the fact that we
are querying popular websites and all DNS names and content
are likely present in the DNS and web caches at the time of the

5The SPDY protocol is disabled by default in this browser version.
6Ranked by alexa.com
7http://seleniumhq.org/
8http://getfirebug.com/



first request. All measurements were performed on a quad core
2.66 GHz Intel Core i7 machine with 8 GB of memory running
Mac OS X v.10.7.

4. ESTIMATING METRICS
In this section, we build on the previously described methodol-

ogy to evaluate the extent to which network-intensive applications
and limited active measurements can be leveraged to estimate
characteristics about a user’s Internet connection. Using BitTorrent
as an example application, we analyze the distributions of latency
and download bandwidth capacity, and evaluate our accuracy in
estimating these values.

4.1 Latency
To evaluate the contribution of several components of total

latency across a user’s connection, we use latency measurements
from traceroutes to remote destinations. While these traceroutes
are destined for other peers in the BitTorrent network, we focus on
the first few hops – these correspond to the last-meter and last-mile
latencies of the user’s home network and the ISP’s access network,
respectively. Prior work has shown that last-mile latency is often
a large fraction of total latency [4], and varies significantly across
access technologies.

We use the latency to the first hop responding from a public IP
address to estimate a user’s last-mile latency. In some cases, we
find that the first hop with a public IP address is actually the user’s
own public IP due to a middlebox or modem that is responding
from this interface. In these cases, we treat it as a response from
the private network and use the next public IP address to estimate
last-mile latency.

Additionally, we identify the latency contribution of the private
network by measuring the latency to the last responding private IP
address. Measuring the latency added by the private network allows
us to distinguish between the latency added by the last-mile (first
public IP) versus the home network. However, in cases where the
ISP itself is providing NATed IP addresses, we are currently unable
to disambiguate this from latency added by a user’s private home
network.

In cases where a user does have a private network, we at-
tempt to identify the type of connection between their host ma-
chine and the middlebox. For example, on systems running
Mac OS X, we use the system profiler (system_profiler
SPNetworkDataType) to match the current active interface
with the device’s profile. If the device’s hardware and type fields
are listed as AirPort, we classify the connection as wireless, and if
they are listed as Ethernet, we classify the device as wired. In all
cases, we record the name of the interface, as well, to verify names
and to check cases that we were unable to classify automatically.

Figure 1 shows the distribution of median latency across the first
public hop for each client that ran traceroute more than 100 times.
To calculate last-mile latency, we subtract the latency to the last
private IP from the latency to the first public IP. For this section,
we exclude users that report a high latency in their private network
(greater than 10% of the latency to the first public hop or greater
than 5 ms), since the latency of the private network may limit the
accuracy of our measurements across the last-mile. Overall, we
find that the majority of users fall between 10 and 100 ms. For users
recording very high latency (>1000 ms), many were subscribed
to wireless services such as Clearwire or tethering with 3G/4G
services – wireless technologies that typically have higher latency
than wired connections.

To validate our latency measurements, we focus on a single ISP
and compare against the values in the SamKnows dataset reported
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Figure 1: CDF of the last-mile latency per user as measured

from our extension. For the majority of users (about 65%),

this falls between 10 and 100 ms.
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Figure 2: CDF of the last-mile latency measured from clients

in AT&T’s network. The curve labeled “Min” represents

the minimum latency recorded by each user, while the

curve labeled “Median” corresponds to each user’s median

recorded latency. The vertical solid line represents the average

latency AT&T last-mile latency reported by SamKnows [14]

(25.23 ms); the dashed vertical line shows the mean plus one

standard deviation (58.7 ms).

by Sundaresan et al. [14]. In AT&T’s network, they report an
average latency of 25.23 ms with a standard deviation of 33.47 ms.
Fig. 2 plots the distribution of the minimum and median latency
for each user in AT&T’s network (AS7132) as measured by our
extension. Considering the distribution of each user’s minimum

last-mile latency (the “Min” curve), the median user’s latency is
19 ms – within 25% of the SamKnows reported value of 25.23 ms.
For 95% of our users in AT&T’s network, their minimum last-
mile latency is within one standard deviation of the SamKnows
reported value. We also plot the distribution of users’ median last-
mile latency to capture the typical case. As one would expect these
latencies are higher – by 53% in the median case. Still, 77% of
users fall within one standard deviation of the SamKnows reported
mean. Since our latency distribution matches closely that reported
by SamKnows for users in AT&T’s network, we conclude that this
approach for measuring last-mile latency is accurate.
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Figure 3: Correlation between all users’ maximum BitTorrent

download throughput and download throughput measured by

NDT given at least a number of samples. The x-axis represents

the minimum number of BitTorrent samples and the y-axis

represents the minimum number of NDT samples needed to be

included in the calculation of the correlation coefficient.

4.2 Bandwidth
To extract a connection’s download throughput rate by passively

observing BitTorrent activity, we use snapshots provided by our ex-
tension to monitor the application’s maximum achieved rate while
downloading content. Due to the fact that some users may have
caps that are lower than their connection’s full capacity, we only
include snapshots when users have not imposed an application-
level bandwidth limit, since such caps could prevent BitTorrent
from utilizing the full capacity of the user’s connection.

One issue with passive monitoring to infer maximum download
rate, however, is that BitTorrent does not always saturate the user’s
connection (e.g. when the user is not downloading any files).
Logically, the longer we are able to passively monitor BitTorrent
activity, the more likely we are to capture a saturated connection.
In order to determine how long a user needs to run BitTorrent
to observe this, we correlate each user’s maximum BitTorrent
download rate with the maximum download rate reported by
Network Diagnostic Tool (NDT).

Figure 3 shows a contour plot of the correlation coefficient be-
tween NDT and BitTorrent maximum achieved speeds across users
with at least X BitTorrent samples and Y NDT measurements. For
example, with users that have at least 325 samples from BitTorrent
and at least 25 samples from NDT, we find a strong correlation
between speeds reported by BitTorrent and NDT (r > 0.80). In
general, the longer a user provides data by running BitTorrent, the
more likely the application will saturate the link, and enable us to
capture the connection’s capacity.

To understand how BitTorrent and NDT throughput measure-
ments compare, we analyze the distribution of the ratio between
the metrics. We consider the subset of users for which we have
sufficient data to infer their download capacity – at least 325
BitTorrent samples and 25 NDT measurements. Figure 4 shows
a CDF of the ratios of the maximum throughput values measured
by BitTorrent and NDT for each user. In cases where the ratio is
significantly lower than 1, BitTorrent is unable to achieve speeds as
high as NDT. This could be caused by a number of factors, such as

10
−1

10
0

10
1

Max Throughput Ratio (BT/NDT)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 4: CDF of the ratio between users’ maximum

BitTorrent transfer rate and the maximum speed measured by

NDT.

10
−1

10
0

10
1

10
2

Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Wireless

Wired

Figure 5: CDF of the download throughput rates achievable

by clients using wired or wireless connections in their private

network. Both distributions are generally similar, though wired

clients are able to achieve rates above 55 Mbps.

a user downloading content from a poorly seeded torrent, resulting
in download speeds being limited by the combined upload capacity
of their peers. If a user subscribes to a service with PowerBoost
– which temporarily gives users faster download speeds when
starting to download a file – NDT may be able to achieve speeds
higher than BitTorrent. This is because BitTorrent may not be able
to leverage the faster downloading period because of the delay in
establishing sufficient connections to other peers.

In some cases, BitTorrent is able to achieve significantly faster
speeds than NDT. Some possible causes include instances where
an NDT measurement server is located far away from a user’s
machine. This would cause the download throughput to be
dominated by the longer RTT, due to the fact that NDT uses a
single TCP connection to measure throughput and the upper-bound
on TCP’s receive window size.

Finally, we evaluate the impact of using wireless in the home
network on a user’s download throughput relative to a wired home
network connection. There were no cases in our dataset for which
we could conduct a direct comparison (e.g. a user who used at
different times a wired and wireless connection in a given network).
Therefore, we compared the distributions of achieved download



Download Instrumented Last
Throughput Mile Latency

Setting Measured Setting Measured

Mbps Mbps ms ms (std)

.512 0.495 0 1.3 (2.3)*

1 0.960 2 2.4 (2.2)

2 1.93 4 4.6 (3.5)

4 3.73 8 8.3 (3.1)
8 7.64 16 16 (1.4)

16 15.2 32 33 (4.3)

32 31.1 64 64 (2.9)

64 64.3 128 128 (3.0)

100 97.7 256 256 (3.8)

- - 512 512 (2.3)

- - 1024 1025 (3.9)

Table 2: For each metric, the setting used to simulate the

last-mile metric (“Setting”) as well as the value of each

setting as measured by our extension (“Measured”). The

measured latency value for an instrumented last mile value of 0

corresponds to the baseline latency to the first hop (*), which

is subtracted from the subsequent RTT values. Bold values

correspond to the default settings.

throughput rates between users on wired or wireless home network
connections, shown in Fig. 5. In general, the wireless users have
slightly slower speeds, differing by 33% at the 95th percentile;
however there is only a 10% difference in the median case. For
both wired and wireless, about 40% of users are able to achieve
about 5 Mbps download speeds. In general, the similarities between
the distributions indicate that using a wireless home network
connection does not impose a significant bottleneck on maximum
achievable download rate.

In summary, we are able to infer low-level metrics such as
throughput and latency by leveraging passive traces of BitTorrent
activity and running limited active measurements. In the next
section, we show how we can relate these measurements to the
performance of other applications.

5. CONTROLLED EXPERIMENTS
In this section, we first evaluate our extension’s ability to mea-

sure the download throughput and last-mile latency in a controlled
environment with emulated access link characteristics. Then,
we study how modifying latency and throughput of the last-mile
connection affects user-perceived web performance, in terms of
page load & rendering time. Of the websites we tested, we
present results for four (Twitter, YouTube, Craigslist, and Bing)
that capture the spectrum of what we observed across all sites.

Using the setup described in Sec. 3, we measure our ability to
accurately measure last-mile link characteristics configured with
a traffic shaper. Table 2 shows the settings we used to simulate
different aspects of each quality of a last-mile link. We tested the
impact of each metric individually. For example, to test the impact
of a download throughput limit of 1 Mbps, we downloaded via
BitTorrent a Linux CD image for 10 minutes. With this setting,
we measured a maximum achievable throughput of 0.960Mbps
at the application level. Across all the throughput and latency
settings we tested, the measured values via our BitTorrent-based
approach closely followed the parameter settings. In the following
subsections, we discuss the impact of each individual metric on
page load times.
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Figure 6: Page rendering time (log scale) for each website

across various download throughput limits. Error bars show

the standard deviation across 10 runs.
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across 10 runs.

5.1 Bandwidth
We study the impact of last-mile download throughput limits on

page load times, shown in Fig. 6. For pages such as Craigslist, we
find that page load times are generally consistent across all tested
bandwidth settings, which we attribute to its small page size.

For pages similar to YouTube, we find that increasing bandwidth
throughput continues to improve page rendering times until reach-
ing 8 Mbps. Websites such as Twitter and Bing see gains until
approximately 4 Mbps and 2 Mbps, respectively. The majority of
the web pages we tested were similar to these two sites. In general,
we note that there is a trend of diminishing returns as download
bandwidth increases.

5.2 Latency
Next, we looked at the impact of last-mile latency on web per-

formance. Figure 7 shows the page rendering times as we increase
the latency across our emulated last-mile link. For all websites, we
find that excessively high last-mile latency dramatically increases
page rendering time. However, as seen in Fig. 1, 50% of users



have a last-mile latency of less than 30 ms. As with our download
bandwidth experiment, decreasing last-mile latency past this point
shows diminishing performance gains. This is because with lower
latencies across the last-mile, RTT from the host machine to the
web server is increasingly dominated by the in-network latency.
Therefore, it appears that the performance for most users is not
significantly limited by their last-mile latency.

For both latency and download throughput, we find that improv-
ing last-mile link characteristics does help web performance – to a
point. This trend reveals that, depending on the scenario, the last-
mile link may not be the web performance bottleneck. In future
work, we plan to study how combinations of these metrics affect
web performance.

6. DISCUSSION
We have shown that it is possible to infer application (e.g. web)

performance using the view from a network-intensive application
and limited active measurements. One advantage of leveraging
network-intensive applications is the ability to avoid most onerous
active measurements when characterizing a user’s service. For in-
stance, we are able to passively infer a user’s download throughput
without incurring the bandwidth “cost” of active download speed
tests. While our approach does use limited active measurements,
such as traceroutes and pings, their bandwidth demand is com-
paratively minor. We have also shown that passively-collected
BitTorrent download snapshots are able to detect users’ connection
speeds, and examined the difference in download performance
between wired and wireless configurations.

Leveraging network-intensive applications for broadband char-
acterization is not without challenges. Perhaps among the most
important challenges is the lack of control over the user’s behavior
(i.e. when we are able to run). We believe this to be a potentially
solvable problem given a sufficiently large and rich dataset as that
one could collect from most network-intensive applications.
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