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ABSTRACT
Today’s open platforms for network measurement and distributed
system research, which we collectively refer to astestbeds in this
article, provide opportunities for controllable experimentation and
evaluations of systems at the scale of hundreds or thousands of
hosts. In this article, we identify several issues with extending
results from such platforms toInternet wide perspectives. Specifi-
cally, we try to quantify the level of inaccuracy and incompleteness
of testbed results when applied to the context of a large-scale peer-
to-peer (P2P) system. Based on our results, we emphasize the
importance of measurements in the appropriate environment when
evaluating Internet-scale systems.

Categories and Subject Descriptors
C.2.5 [Communication Networks]: Local and Wide-Area Networks–
Internet; C.4 [Performance of Systems]: Measurement tech-
niques

General Terms
Experimentation, Performance, Measurements.

Keywords
Internet-scale systems, peer-to-peer, evaluation.

1. INTRODUCTION
Today’s open platforms for network measurement and distributed

system research, which we collectively refer to astestbeds in this
article, provide opportunities for controllable experimentation and
evaluation of systems at the scale of hundreds or thousands of
hosts [8,15,20]. These testbeds have been successfully used to ad-
vise a variety of important applications addressing IP reachability,
prefix hijacking and routing anomalies.

Recent studies, however, suggest that testbed results for Internet
systems do not always extend to the targeted deployment. For
example, Ledlie et al [11] and Agarwal et al. [1] show that network
positioning systems perform much worse “in the wild” than in
PlanetLab deployments.

In this article, we identify several limitations of the accuracy
and completeness of testbed results when applied to the context
of a large-scale peer-to-peer (P2P) system. To inform this study,
we use a unique collection of traces gathered from a deployment
containing hundreds of thousands of users located at the network
edge.

We focus our analysis on the following three issues that af-
fect the validity of any study extending testbed results to an
Internet scale. First, we find that large and significant portions

of the Internet topology used by P2P systems are invisible to
research testbeds, limiting the effectiveness of testbed-based in-
ference of Internet paths and relationships between autonomous
systems (ASes). Next, we show that inferred properties of these
topologies (latencies and throughput) are inaccurate. Finally, we
discuss how these issues prevent accurate evaluations of perfor-
mance for distributed systems running on these topologies.

Based on our results, we argue for a third stage for evaluating
Internet-based systems – beyond emulation and overlay testbeds
– that includes edge-based measurements. There is a number of
approaches to achieve this goal, including the use of application-
level and network-level traces from the edge of the network (e.g.,
via MLab1 and Ono datasets). We also encourage the design and
deployment of additional edge-based monitoring services, either
built into existing distributed services or provided independently
with the proper incentives for Internet-scale adoption.

2. EDGE SYSTEM TRACES
The Internet is growing in ways that make increasingly difficult

to attain a global view of the network. Large swathes of the network
cannot be probed directly from our research testbeds and a number
of valuable measurement techniques have side effects that render
them impractical.

For our study, we address this issue using network- and application-
level traces from BitTorrent users running the Ono plugin [4].
In particular, our software passively records the volume of data
transferred over each host’s connection and performs active ping
and traceroute measurements to a subset of these connections.

Our installed user base has grown to cover 204 countries, 53,000
routable prefixes and more than 7,000 ASes since December, 2007.
The collection of traces used in this study was contributed by
a subset of the total installed subscribers, consisting of tens of
thousands of users online during the measurement period. While
the amount of data collected per unit time varies according to
the online user population, each day we record between 2.5 and
3.5 million traceroutes, tens of millions of latency measurements
and more than 100 million per-connection transfer-rate samples.
As part of this work, we are making this dataset available to
researchers through our EdgeScope project.2

In the following sections we use this dataset to explore several
key pitfalls of testbed-based evaluations for Internet scale systems.
We begin by exploring the completeness of the view from such
testbeds.

3. GENERALIZING NETWORK VIEWS
1http://www.measurementlab.net/
2http://www.aqualab.cs.northwestern.edu/projects/EdgeScope.html



Tier-1 Customer-Provider Peering
3.14% 12.86% 40.99%

Table 1: Percent of links missing from public views, but found
from edge systems, for major categories of AS relationships.

A number of studies explicitly or implicitly rely on network
topologies for estimating Internet resiliency, inferring Internet
paths and estimating cross-network traffic costs, to name a few.
While several research efforts have successfully extracted detailed
topologies from public vantage points (i.e., thepublic view), it is
well known that these Internet views are incomplete [2,3,19].

In previous work, we explored a lower bound for missing
topology information using AS-level paths and AS relationships
inferred from traceroute data gathered from hundreds of thousands
of users located at the edge of the network [3]. We briefly
summarize some of our key finding regarding the portion of new
AS links we found, then provide new results indicating the impact
of these links when evaluating Internet scale systems.

Missing links. For this analysis of missing links, we used
a dataset that includes probes from nearly 1 million source IP
addresses to more than 84 million unique destination IP addresses,
all of which represent active users of the BitTorrent P2P system. By
comparison, the BitProbes study [10] used a few hundred sources
from the PlanetLab testbed to measure P2P hosts comprising
500,000 destination IPs. Naturally, the number of vantage points
available from edge systems in our dataset far outnumbers those
from public views, particularly for lower tiers of the Internet
hierarchy where most of the ASes reside.

This unique perspective allows us to identify links invisible to
the public view; in total, we found 20% additional links missing
from the public view. The vast majority of these links were located
below Tier-1 ASes in the Internet hierarchy with, not surprisingly,
their number increasing in lower tiers.

In addition to the locations of links in the Internet hierarchy, it is
useful to understand what kinds of AS relationships are included in
these missing links. Table 1 categorizes links into Tier-1, customer-
provider or peering links and shows the missing links as a fraction
of existing links in the public view, for each category. Note that
there is a large number of additional peering links (44%) and a
significant fraction of new customer-provider links (12%). Based
on these results, it seems clear that when evaluating the interaction
between network topologies and Internet systems at the edge –
often located in lower Internet tiers – testbed-based topologies are
less likely to include many relevant links and relationships.

Impact of missing paths.To better understand how this missing
information affects studies of Internet-scale systems, we investigate
the impact of missing links using three weeks of connection data
from P2P users. In particular, we try to determine how much of
these users’ traffic volumes can be mapped to AS-level paths – an
essential step for evaluating P2P traffic costs and locality.

We begin by determining the volume of data transferred over
each connection for each host, then we map each connection to a
source/destination AS pair using the Team Cymru service [23]. We
use the set of paths from public views and P2P traceroutes [3] and,
finally, for each host we determine the portion of its traffic volume
that could not be mapped toany AS path in our dataset.3

Figure 1 uses a cumulative distribution function (CDF) to plot
these unmapped traffic volumes using only BGP data (labeled
BGP) and the entire dataset (labeledAll). The figure shows that

3For simplicity, we assume that publicly announced BGP paths
coincide with those that data actually traverses.
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Figure 1: CDF of the portion of each host’s traffic volume that
could not be mapped to a path based on both public views and
traceroutes between a subset of P2P users.

when using only BGP information the median volume of unac-
counted traffic is nearly 75%. In fact, complete path information is
available for only 7.4% of hosts and 7.3% of hosts use connections
for which BGP data provides no path information. When usingAll
path information, we cannot locate complete path information for
66% of hosts; fortunately, the median portion of traffic for which
we cannot locate an AS path is only 0.4%. From the set of hosts
in our dataset, 4% of them use connections for which we have path
information for only half of their traffic volumes; less than 2% use
connections for which we have no path information at all.

While our topology data adds 20% more links to the Internet
graph, it allows us to map an order of magnitude more P2P traffic
than using BGP alone. The difference is not due to a failure
of existing path measurements, but rather the limitations of their
coverage. As these results show, one must use caution when
drawing conclusions from an Internet wide study from today’s
testbed environments.

We also note that there is a small portion of traffic (3.8% on
average) that cannot be mapped even with the links we add to the
public view – this occurs because our traceroute measurements are
issued to a randomly selected subset of connected P2P users. While
this is a non-negligible volume of unmapped traffic, we do not
expect it to significantly impact our conclusions in the remainder
of this article because our path measurements are performed at
random and thus minimize any bias in missing paths.

4. GENERALIZING MEASUREMENTS
While the previous section showed that large portions of the

network are invisible to current testbeds, in this section we illustrate
how properties of topology links measured from testbed vantage
points do not extend to those measured from the edge of the
network. We begin by focusing on estimating distances between In-
ternet hosts, which is essential to a variety of network performance
optimizations including server selection, central leader election and
connection biasing. We close the section by examining Internet-
wide achieved throughput as measured by BitTorrent throughput
from users at the edge of the network, which is essential for
modeling and simulating system dynamics.

Network distances.There is a large body of research addressing
the issue of how to measure, calculate and encode Internet distances
in terms of round-trip latencies [7, 13, 21, 22]. Generally, these
solutions rely on methods to predict latencies between arbitrary
hosts without requiring theN2 number of measurements that
provide ground-truth information. Previous work has identified
the following key properties that impact network positioning per-



formance: the structure of the latency space, the impact of last-
mile delays and the rate of triangle-inequality violations (TIVs)
in the latency space. We now review recent results showing
that these key properties are significantly different when measured
exclusively from edge systems compared to those measured from
testbed environments [5].

We base our results on 2 billion latency samples gathered from
edge systems during June 10–25th, 2008. Unlike studies that
use PlanetLab hosts to measure latencies or infer them based on
latencies between DNS servers [9], this dataset consists exclusively
of directly measured latencies between edge systems. It is also an
order of magnitude larger than the set used by Agarwal et al. [1] to
evaluate server selection in gaming systems.

Latencies.To begin, Fig. 2 compares the average latencies seen
by hosts using the Ono plugin (labeled P2P) to those seen from
three related projects: the RON testbed (MIT), PlanetLab (PL) and
Ledlie et al.’s study (PL-to-P2P). The graph shows that latencies
from edge systems are generally much larger than those from MIT
King [7] and PlanetLab (PL). In fact, the median latency in our
dataset is twice as large as reported by the study by Ledlie et
al. [11], which used PlanetLab nodes to probe Vuze P2P users (PL-
to-P2P).

To determine whether the latency distribution was affected by
P2P traffic, we compared our results with those gathered only
during periods when hosts were not transferring data. While we
did find differences in latencies between peers actively transferring
data and those in the complete dataset, the measured difference in
median latencies was less than 10%.

Because a large portion of the difference in latencies remains
unexplained, we investigate whether they are due to the fact that
paths from PlanetLab to the rest of the Internet are significantly
different from those between networks at the edge. For example,
PlanetLab hosts are known to offer higher speed interconnections
across countries and continents than what is generally available
to ISPs hosting home users. Further, such testbed hosts are not
subject to last-mile factors such as low-performance middleboxes
and access technologies such as interleaving in DSL and con-
tention/queuing for the shared medium in cable broadband.
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Figure 2: CDFs of latencies from different measurement
platforms (semilog scale). Our measurement study exclusively
between peers in Vuze (labeled P2P) exhibits double the median
latency “in the wild” (labeled PL-to-P2P).

Last-mile effects. To analyze last-mile effects, we dividr the
traceroute-based IP-level path between hosts into quartiles and
determining the portion of the end-to-end latency contained in each
quartile. If the latency were evenly distributed among IP hops along
a path, each quartile would contain 25% of the end-to-end latency.
In contrast, the first quartile (which is very likely to contain the

entire first mile) accounts for disproportionately large fractions of
the total end-to-end latency. For instance, when looking at the
median values, the first quartile alone captures 80% of the end-
to-end latency. The middle two quartiles, in contrast, each account
for only 8%. 4

Also note that the first quartile (and a significant fraction of the
last quartile) has a large number of values close to and larger than
1. This demonstrates the variance in latencies along these first and
last miles, where measurements to individual hops along the path
can yield latencies that are close to or larger than the total end-
to-end latency (as measured by probes to the last hop). In fact,
more than 10% of the first quartile samples have a ratio greater
than 1. While the performance impact of the last-mile is well
known, the problem is particularly acute in typical network edge
settings. However, most of today’s network positioning systems
either ignore or naively account for the severity of this issue. For
instance, while Vivaldi uses “height” to account for (first- and)
last-mile links [7], this analysis suggests that a single parameter
is insufficient due to the large and variable latencies in a large-scale
P2P environment.

Triangle-Inequality Violations. TIVs in the Internet delay
space occur when the latency between hostsA andB is larger than
the sum of the latency fromA toC andC toB (A 6= B 6= C). This
is caused by factors such as network topology and routing policies
(see, for example, [12, 22]). Wang et al. [24] demonstrate that
TIVs can significantly reduce the accuracy of network positioning
systems.

We performed a TIV analysis on our dataset and found that
over 13% of the triangles had TIVs (affecting over 99.5% of the
source/destination pairs). Lumezanu et al. [12] study the dynamics
of TIVs and demonstrate that using the minimum RTTs, as done
in this study, is likely to underestimate the rate of TIVs. Thus our
results can be considered a lower bound for TIVs in a large-scale
P2P environment.

Compared to TIV rates reported in an analysis of datasets from
Tang and Crovella [22], TIV rates in the P2P environment we
studied are between 100% and 400% higher, and the number of
source/destination pairs experiencing TIVs in our dataset (nearly
100%) is significantly greater than the 83% reported by Ledlie
et al. [11]. These patterns for TIVs and their severity hints at
the challenges in accounting for TIVs in coordinate systems. In
Section 5 we show the impact of these violations on their accuracy.

Bandwidth capacities. Bandwidth capacities are an important
factor in the design of distributed systems, from making encoding
decisions in video streaming to informing peer selection in P2P
systems. While there are many proposals for estimating capacities,
these techniques are not amenable to widespread studies due
to limitations on measurement traffic volumes and the need for
compliant endpoints. Further, previous work has cast doubts on
their accuracy [16].

Perhaps more important than raw capacities, the maximum
transfer rates that hosts actually can achieve are essential for
modeling the dynamics of any large-scale data-sharing system such
as P2P file sharing (e.g., when modeling BitTorrent using only
tracker information [6]). Of course, these achieved transfer rates
can be affected by ISP interference (e.g., traffic shaping), limited
available bandwidth in the P2P system and user-specified limits
on the maximum throughput consumed by a P2P application. We
now investigate how these rates compare with bandwidth capacities
estimated by tools run from testbed environments.

4The first and last quartiles are not symmetric because large
numbers of hosts reside behind middleboxes that block traceroute
probes.



After removing samples containing user-specified limits on trans-
fer rates, we find the maximum upstream and downstream transfer
rates seen by each host during a three-week period in April, 2009.
We base our analysis on transfer-rate samples taken every 30
seconds; during the measurement period, 90% of hosts were online
for more than 15 minutes and median session times were on the
order of hours. In addition to quantifying achieved transfer rates,
our results represent a lower bound for each host’s bandwidth
capacity.

Figure 3 depicts a CDF of maximum upstream and downstream
throughput seen for each host in our study. First, we note the
lack of step-like functions in the CDFs, which would occur if
BitTorrent were, as commonly believed, most often saturating the
full bandwidth capacity. Thus, while BitTorrent attempts to saturate
each user’s downstream bandwidth capacity, in practice it does not
always do so.

We also find that the median upstream rate is 54 KB/s while
the median for downstream rates is 102 KB/s. While these values
indicate the effects of asymmetric bandwidth allocation, typically
such allocations offer order-of-magnitude larger downstream rates.
The smaller difference in these two values seems to indicate that
the transfer rates achieved by P2P systems are thus limited by the
peers’ upstream capacities.

It is important to note that these CDFs do not imply that the
ratio of upstream to downstream capacities is greater than 0.5 for
most hosts – some of the above samples contain only upstream
transfer rates. For those hosts where we can measure both upstream
and downstream throughputs, we find that the median ratio is
0.32 and the 90th percentile ratio is 0.77. This is in line with
the asymmetric bandwidth allocations typical of DSL and cable
Internet technologies being used by the majority of our vantage
points.

We now compare these lower-bound estimates of capacities with
those measured from PlanetLab in 2006 as reported by Isdal et
al. [10]. One of their findings is that 70% of hosts have an upload
capacity between 350Kbps and 1Mbps. Studies from the ITU5

indicate that bandwidth capacities have increased by about 35%
per year in the subsequent three years. Thus, even if BitTorrent
consumed only a fraction of a host’s bandwidth capacity, we would
expect achieved transfer rates to be equal to or larger than the
measured capacities from the BitProbes study.

Based on results from P2P users, however, we surprisingly find
that only 45% of hosts in our study achieve such transfer rates.
In fact, 40% of hosts in our study achieveless than 350 Kbps
maximum upstream rates. This suggests that even if the testbed-
based bandwidth capacity measurements were accurate, they are
insufficient for predictingachieved transfer rates in a P2P system.

For completeness, Fig. 3 shows thatdownstream rates closely
track upstream rates until after the 30th percentile, where down-
stream rates significantly exceed upstream ones. We cannot
compare these values with Isdal et al. because their approach does
not extend to downstream rates at the edge of the network.

Finally, we analyze the maximum throughput achieved by hosts
grouped by country in Fig. 4. We find that hosts in Germany,
Romania and Sweden achieve the highest transfer rates while those
in India, the Philippines and Brazil achieve the lowest. This
is in line with results from independent bandwidth tests from
Speedtest.net, indicating that maximum transfer rates measured
from P2P users, when grouped by location, are in fact predictive
of the bandwidth capacityrankings.

In summary, our study of achieved throughput in BitTorrent

5http://www.itu.int/publ/D-IND/en
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Figure 3: CDF of transfer rates for all users, where the median
is only 50 to 100 KB/s. This suggests that the BitTorrent system
is dominated by mid-to-low-capacity hosts.
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Figure 4: Per-country throughput CDFs, showing that
Germany, Romania and Sweden have the highest average
capacities while India, the Philippines and Brazil have the
lowest.

indicates that bandwidth capacity measurements from testbeds are
likely to overestimate achieved throughput at the edge, while this
throughput tends to correlate with bandwidth capacity rankings
across countries. Since achieved throughput significantly impacts
the network flows generated by many distributed systems (e.g., P2P
file sharing), using bandwidth capacities can lead to misleading
conclusions about system dynamics. For example, we show
in the next section that our empirically derived flows produce
significantly different results in terms of P2P traffic costs when
compared to estimates in previous work.

5. INFERRING SYSTEM PERFORMANCE
While measurements from the edge of the network help us better

understand network topologies, delay behavior and bandwidth ca-
pacity distributions, they also are essential to designing, evaluating
and optimizing distributed systems that run in this environment.
We now show how more accurate views of the edge of the
network affect system performance when compared to evaluations
conducted from testbed environments.

Network positioning. We begin with network positioning
systems and determine how the latency space measured in the
previous section affects accuracy for a variety of positioning
systems including GNP [13], Vivaldi [7], Meridian [25] and
CRP [21].
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Figure 5: Absolute value of errors between estimated and
measured latencies, in milliseconds (right), and absolute value
of relative errors between estimated and measured latencies
(left).

The Vivaldi and CRP systems are implemented in our mea-
surement platform, so their values represent true, “in the wild”
performance. For evaluating GNP performance, we use the au-
thors’ simulation implementation. The results are based on three
runs of the simulation, each using a randomly chosen set of 15
landmarks, 464 targets and an 8-dimensional coordinate space. We
also simulate Meridian using settings proportional to those in the
original evaluation, with 379 randomly selected Meridian nodes,
100 target nodes, 16 nodes per ring and 9 rings per node. Our
results are based on four simulation runs, each of which performs
25,000 latency queries.

We begin our analysis by evaluating the accuracy of GNP and of
the Vuze Vivaldi implementations in terms of errors in predicted
latency. Meridian and CRP are omitted here because they do
not provide quantitative latency predictions. Figure 5(a) presents
the cumulative distribution function (CDF) of errors on a semilog
scale, where each point represents the absolute value of theaverage
error from one measurement host. We find that GNP has lower
measurement error (median is 59.8 ms) than the original Vivaldi
implementation (labeled V1, median error is≈ 150 ms), partially

due to GNP’s use of fixed, dedicated landmarks. Somewhat
surprisingly, Ledlie et al.’s Vivaldi implementation (labeled V2)
has slightly larger errors in latency (median error is≈ 165 ms)
than GNP and V1; however, we show in the next paragraph that
its relative error is in fact smaller.

Relative error, the difference between the expected and measured
latency, is a better measure of accuracy for network positioning
systems. To compute relative errors, we first calculate the absolute
value of the relative error between Vivaldi’s estimated latency and
the ping latency for each sample, then find the average of these
errors for each client running our software. Fig. 5(b) plots a CDF
of these values; each point represents the average relative error
for a particular client. For Vivaldi V1, the median relative error
for each node is approximately 74%, whereas the same for V2 is
55% – both significantly higher than the 26% median relative error
reported in studies based on PlanetLab nodes [11]. Interestingly,
the median error for Vivaldi V2 is approximately the same as for
GNP, indicating that decentralized coordinates do not significantly
hurt relative performance. Finally, because Meridian and CRP do
not predict distances, Fig. 5(b) plots the relative error for the closest
peers they found. Meridian finds the closest peer approximately
20% of the time while CRP can locate the closest peer more than
70% of the time.

In summary, network positioning systems that rely on predicting
latencies perform worse than those using direct measurement and
relative positions, as expected from the latency-space analysis in
Section 4.

ISPs costs/revenue from P2P file sharing.Large traffic vol-
umes generated by P2P file-sharing systems have generated a
great deal of publicity as network providers attempt to reduce
their costs by blocking, shaping or otherwise interfering with P2P
connections. Given the popularity of these systems, a number of
research efforts have investigated this issue by designing systems
to reduce cross-network traffic [4,26] and evaluate the potential for
P2P traffic locality [14].

Most previous work in this area relies on limited deployments
and/or simulation results to estimate network costs of P2P systems.
We now show how measurements from a large-scale, live deploy-
ment – combined with more complete AS topology information –
provides a different view of the costs incurred by these systems.

A number of studies estimate the costs of P2P traffic as propor-
tional to the number of AS hops along paths to different hosts. In
this context, traffic is consideredno-cost (also referred to aslocal)
if it stays entirely in the same AS. We now refine this metric to
include all paths for which no hop contains a customer-provider
relationship (or vice-versa); i.e., our definition of no-cost includes
traffic that remains in the origin AS or traverses peering and sibling
links. This is based on the assumption that traffic costs borne by
ISPs occur at customer/provider edges.

Figure 6(a) presents a CDF of the portion of each P2P user’s
traffic that is no-cost. Our results from 130,000 source IPs
and 12 million destination IPs indicates that the vast majority of
hosts naturally generate at least some no-cost traffic. This result
contradicts those from Piatek et al. [14], who use inferred testbed-
based results and a single deployed vantage point to question the
effectiveness of reducing ISP costs in P2P systems. In fact, we
find that the majority of traffic volumes are no-cost for a significant
fraction (12%) of hosts.

It is important to note that these results may be biased by the
fact that the measured hosts are using Ono to preferentially use
no-cost peer connections. Due to the nature of Ono, we cannot
control for cases where higher-cost paths can be used. As a result,
the portion of no-cost traffic we measure may be larger than for
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Figure 6: CDF of portion of “no-cost” traffic generated per
host (right), and estimated Internet-wide costs incurred by
BitTorrent traffic (left). The vast majority of hosts generate at
least some no-cost traffic while the majority of traffic volumes
are no-cost for 12% of hosts. Further, our results show that
P2P traffic has a net effect of generating significant revenue for
provider ISPs.

hosts not using the plugin. On the other hand, of the total number
of connections, those that are biased are relatively small and this
reduces the potential impact on our results.

Finally, Fig. 6(b) plots the average cost per byte for each user,
based on the net costs of P2P traffic according to the traffic volumes
per path and AS relationships along each path. Specifically, the
cost of a path is the sum of the cost of each AS hop, where a hop
between customer and provider is assigned a cost of 1, provider
to customer a cost of -1 and zero otherwise (sibling and peer AS
hops). While our cost model is simple, it allows us to perform
the first analysis of traffic costs based on the common practice
of charging for transit based (at least in part) on traffic volumes
crossing customer/provider links. We then determine, for each
host, the portion of all traffic volume generated by each of its
connections and multiply this by the cost of the path. Each point in
Fig. 6(b) represents the sum of these values for each host.

As the figure shows, the vast majority of hosts generate flows
with a net effect of generating revenue (i.e., negative costs) for
ISPs. While this result is in agreement with commonly held notions
that P2P traffic has generated revenue for ISPs (particularly those
in tier-1), we believe that we are the first to attempt to quantify this

effect. We leave a study of which ISPs are benefiting from this (and
by how much) as part of our future work.

6. WHERE DO WE GO FROM HERE?
While this article focused on limitations for testbeds, current

edge measurement platforms are not without their own restrictions.
Our own view from a large deployment on edge systems still
does not provide complete network coverage, nor does it allow
controlled experimentation. These are challenges that affectall
approaches for edge measurement.

Further, our platform does not provide arbitrary measurement
(by design), and our view of the network is restricted to what
is offered by passive measurements from BitTorrent and limited
active probing, only while users run our software. These limitations
are not inherent to edge-based measurement in general and, given
the need for edge-based views of the network, we believe that an
important area of future work is addressing them in the design of
new distributed research platforms.

While new work in this area can draw from the lessons we
learned in our own deployment (e.g., dealing with data collection
at scale and convincing users to install software), there is a large
number of opportunities for new research in issues such as tradeoffs
between security, privacy and experimental control, and how to
manage and mine the data collected from such platforms.

Others in our community are also exploring opportunities to
incorporate edge-based measurements when evaluating Internet
wide systems. In addition to our EdgeScope project, related
research efforts such as DipZoom [17], ShaperProbe6, C’MON7,
HMN [18] and Glasnost8 are collecting views of the edge of the
network. We hope that public releases of their datasets will enable
new evaluations of network properties and system performance in
representative environments.

7. CONCLUSION
This article discussed potential issues with extending results

from limited platforms to Internet wide perspectives. In particular,
we showed that testbed-based views of Internet paths are surpris-
ingly incomplete, the properties of these paths do not extend to
the edge of the network and these inaccuracies have a significant
impact on inferred system-wide performance for services running
at the edge. These results make a strong case for research in new
evaluation strategies for Internet-scale systems, both through edge-
systems traces (such as those available via our EdgeScope project)
and new evaluation platforms.
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