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Summary

The widespread deployment of inexpensive communication technologies, computational resources in

the networking infrastructure, and network-capable end devices offers a rich design space for novel

distributed applications and services. Exploration of this space has given rise, for instance, to the

notions of grid and peer-to-peer computing. Both technologies promise to change the way we think

about and use computing, by harvesting geographically distributed resources in order to create a

universal source of pervasive computing power that will support new classes of applications.

Despite the growing interest in these new environments and the increasing availability of the

necessary hardware and network infrastructure, few actual applications are readily available and/or

widely deployed. Such scarcity results from a number of technical challenges that must be addressed

before the full potential of these technologies can be realized. Most of these applications, as well as

the services they utilize, are expected to handle dynamically varying demand on resources and to

run in large, heterogeneous, and dynamic environments, where the availability of resources cannot

be guaranteed ‘a priori’ – all of this while providing acceptable levels of performance.

To support such requirements, we believe that new services need to be customizable, applications

need to be dynamically extensible, and both applications and services need to be able to adapt to

variations in resources’ availability and demand. The Active Streams approach, advocated in this

dissertation, aims to facilitate the task of building new distributed systems with these characteristics.

To this end, the approach considers the contents of the information flowing across the application and

its services, it adopts a component-based model to application/service programming, and it provides

for dynamic adaptation at multiple levels and points in the underlying platform. In addition, due

to the complexity of building such systems, it tries to ease the programmer’s task by facilitating

the needed infrastructure for resource monitoring, self-monitoring and adaptation. This dissertation

explores the Active Streams approach and its supporting framework in the context of these new

distributed applications and services.



Chapter 1: Introduction

The widespread deployment of inexpensive communication technologies, computational resources

in the networking infrastructure, and network-capable end devices offers a rich design space for

novel distributed applications and services. Exploration of this space has given rise, for instance, to

the notions of grid [93, 92] and peer-to-peer [131, 100, 26] computing. Both technologies promise

to change the way we think about and use computing, by harvesting geographically distributed

resources in order to create a universal source of pervasive computing power that will support new

classes of applications.

Despite the growing interest in these new environments and the increased availability of the

necessary hardware and network infrastructure, few actual applications are readily available and/or

widely deployed. Such scarcity results from a number of technical challenges that must be addressed

before the full potential of these technologies can be realized. This dissertation explores a novel mid-

dleware approach and its supporting framework for building distributed applications in an attempt

to meet some of these difficult challenges. Specifically, we address the inherent heterogeneous nature

of these environments and the dynamically varying demand and availability of their resources.

1.1 Motivation

Improvements in communication technologies are leading many to consider more decentralized ap-

proaches to the problem of computing power. While the power of distributed computing and the

opportunity presented by idle computer systems have been recognized for some time and have

spawned a significant amount of research on its detection and utilization, true wide-area distributed

computing had to wait for the spread of the Internet and the arrival of more powerful end devices.

The past decade has witnessed an explosive growth of the Internet, with a number of hosts growing

from just over a million on January 1993 to an estimated 100 million in January 2001 [25]. In parallel

with this development, the raw power of individual computers, following Moore’s Law [88], has kept

doubling every 18 months.

Grid and peer-to-peer computing are two well-known attempts to let users “tap processing power

off the Internet as easily as electrical power can be drawn from the electricity grid” [111]. Despite the

great promise of these emerging technologies, relatively few general applications exist. Their realiza-

tion is complicated by the characteristics of the target environments, including their heterogeneous

nature as well as the dynamic variation on demands and availability of their resources.

Heterogeneity is an intrinsic property of the Internet, both across the network infrastructure

as well as within end systems. Figure 1 shows the high variance in client and network capability
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Figure 1: End-systems and network infrastructure heterogeneity.

today. While some host may be attached through a high-speed Gigabit Ethernet network, others

are connected by 10Mbps Ethernet links, 1.3Mbps Asynchronous DSL connections, slow dialup or

wireless links (see Table 2). In end-systems, this heterogeneity manifests itself in a variety of ways,

from processing power to memory capacity and screen resolution (Table 1).

Compounded with the challenge posed by such heterogeneity, these applications must also deal

with their run-time varying demands on resources in environments where availability cannot be

guaranteed ‘a priori’. Dynamic variations in resource usage are typically due to applications’ data

dependencies and/or users’ dynamic behaviors, and run-time variation in resource availability is a

consequence of failures, resource additions or removals, and most importantly, contention for shared

resources. Figure 2 presents some measurements that illustrate these widely dynamic variations

on resource availability. We measured, over a 24-hour period, the round-trip times between three

different hosts of a cluster located at Georgia Tech and the web servers of three universities in

Argentina, Italy and Hong Kong. Each point in Figure 2-a is the average value of 10 pings at 5

seconds intervals using the default ICMP ECHO REQUEST packet size of 64 bytes. The ranges of

the error bars are computed based on the mean deviations. The second figure reports the variations

in load, also over a 24-hour period, for three other hosts as indicated by the average number of jobs

in their run queues over the last 15 minutes.
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System Characteristic PDA Laptop Midrange PC Workstation

Memory Capacity 2MB 128MB 512MB 4GB

Number of CPUs 1 1 1 4

CPU Speed 16MHz 1GHz 2GHz 450 MHz

Screen Resolution 160x160 1024x768 1280x1040 1280x1024

Table 1: Example of end-host heterogeneity.

Network Bandwidth Latency

Gigabit 1Gbps 0.5ms

Local Ethernet 10-100Mbps 1ms

DSL 1083(down)/199(up) Kbps 100ms

Wireless 14.4-56Kbps 200-400ms

Table 2: Example of network heterogeneity.

To deal with these challenges: the Internet’s intrinsic heterogeneity as well as the run-time

changes on resource availability and demand, we believe that new services need to be customiz-

able, applications need to be dynamically extensible, and both applications and services should be

resource-aware and include some level of introspection [123].

A comprehensive approach to building new distributed applications can facilitate this by consid-

ering the contents of the information flowing across the application and its services and by adopting a

component-based model to application/service programming. It should provide for dynamic adapta-

tion at multiple levels and points in the underlying platform; and since deciding on such adaptations

is complicated, it should ease the programmer’s task by providing the needed infrastructure for

resource monitoring, self-monitoring and adaptation.

This dissertation proposes Active Streams, a middleware approach and its associated frame-

work for building distributed applications and services that exhibit these characteristics. Active

Streams permits users to dynamically attach location-independent functional units, called stream-

lets, to the data streams flowing between applications and their services. Application evolution and

various degrees of adaptation are possible through the attachment/detachment of streamlets, the

re-deployment of streamlets over the available resources on the datapath, and the on-line tuning of

the streamlets’ behaviors through dynamic updates of their parameters. The associated framework

provides an execution environment for these functional units and a pull-based mechanism for dis-

tributing them; it includes a sub-system for resource and self-monitoring and a directory service to

“hold” everything together.

This chapter presents a high-level synopsis of the dissertation. The next section contains a basic

overview of the key thesis components. This is followed by highlights of the main contribution of

the thesis, and a brief summary of background and related research. The chapter closes with a

description of the overall organization for the rest of the dissertation.
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Figure 2: Dynamic variations in resource availability.

1.2 The Active Streams Approach

With Active Streams, distributed systems are modeled as being composed of applications, services,

and data streams. Services define collections of operations that servers can perform on behalf of

their clients. Data streams are sequences of self-describing application data units flowing between

applications’ components and services. These data streams are made active by attaching application-

or service-specific location-independent functional units, called streamlets.

Streamlets are self-contained units that operate on records arriving on their incoming streams

and generate records placed onto their outgoing streams. Streamlets can be obtained from a number

of locations; they can be downloaded from clients, provided by servers, or retrieved from a streamlet

repository.

A critical issue for large-scale system design and evolution is the choice of an architectural style

that permits the integration of separately-developed components into large systems. Active Streams

adopts an event-based or implicit invocation architectural style for system composition [51, 52]; with

this approach a component can invoke another one without needing to know its name by simply

announcing the occurences of certain “events” in which the other component has registered interest.

Application evolution and/or a relatively coarse form of adaptation are obtained by the attach-

ment/detachment of streamlets that operate on and change a data stream’s properties. Finer grain

adaptations are possible through the tuning of an individual streamlet’s behavior via remotely up-

dated parameters, and by the re-deploying of streamlets to best leverage the dynamically-changing

available resources over the datapath.

Active Streams are realized by mapping streamlets and streams onto the resources of the un-

derlying distributed platform, seen as a collection of loosely coupled, interconnected computational

units. These computational units make themselves available by running as Active Streams Nodes
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(ASNs), where each ASN provides a well-defined environment for streamlet execution.

The deployment and redeployment of possibly independently developed streamlets requires the

coordination and interaction of multiple producers and consumers that may be geographically (and

organizationally) dispersed. Active Streams relies on a Streamlet Repository Service to provide the

basic functionality needed for these tasks.

Active Streams applications rely on a push-based customizable service for resource and self-

monitoring (ARMS). Through ARMS, applications can collect a selected subset of the data made

available by distributed monitors. These monitoring streams can be integrated to produce application-

specific views of system state and decide on possible adaptations.

As is common in distributed systems, a directory service provides the “glue” that holds the Active

Streams framework together. The dynamic nature of most relevant objects in Active Streams as

well as in the types of applications targeted by the approach makes the passive client interfaces of

classical directory services inappropriate. Thus, the Active Streams framework includes a proactive

directory service (PDS) with a publish/subscribe interface through which clients can register for

notification of changes to objects currently of interest to them. The levels of detail and granularity

of these notifications can be dynamically tuned by the clients.

These four components: the Active Streams Nodes, the Streamlet Repository Service, the Active

Resource Monitoring Services, and our Proactive Directory Service, constitute the core of the Active

Streams framework.

1.3 Contributions

This dissertation offers a novel approach, together with the design and implementation of its sup-

porting framework, for building distributed applications and services that can effectively operate in

heterogeneous and highly dynamic environments. Specifically:

We present Active Streams, a new approach to building adaptive distributed systems. This

approach supports the dynamic customization of services, run-time extensibility of applications,

and the dynamic adaptation of applications and services to environmental changes. It adopts a

component-based model to system programming with an implicit invocation mode of integration,

centered around two simple abstractions – streams and streamlets. Streams are sequences of typed,

self-describing, application-specific data units connecting parts of and applications and services.

These streams are made active by attaching streamlets, application- or service-specific location-

independent functional units.

We describe the design and implementation of the Active Streams Framework, an architecture

for building adaptive and extensible distributed systems following this approach. The framework

supports dynamic system adaptation at multiple levels and points in the underlying platform; it

provides a pull-based service for code distribution with security considerations; it facilitates the

needed infrastructure for resource monitoring, self-monitoring and adaptation, thus allowing the

designer to focus on the application-specific logic; and it includes a directory service with an extended

proactive interface more suited to the dynamism of the targeted environments.

Finally, to demonstrate the utility and flexibility of the Active Streams approach and to partially
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illustrate the use of its supporting framework, we experiment with two different types of applications.

We present our experiences with the implementation of their prototypes and summarize what we

have learned from them.

The common thread connecting our approach as well as most of the components of its supporting

framework is the idea of activity. In Computer Science, a system entity is commonly referred to as

active when some sort of processing has been attached to it, and this processing is to be implicitly

invoked upon certain pre-stated conditions.

In the Active Streams approach, activity is used to ease the development and evolution of dynam-

ically adaptive application and services. In the context of ARMS, activity is intended to improve an

application’s reactiveness to changes in itself or its environment. Finally, in the Proactive Directory

Service, activity is utilized as a way for clients to regain control over notification, something they

implicitly relinquished by making use of its proactive interface.

1.4 Related Work

This section contextualizes the research described in this dissertation by presenting an overview of

related work. Our goals are twofold: we seek to point out the limitations of current state-of-the-art

approaches and present previous works that have contributed to the definition of ours. A more

complete discussion appears in Chapter 7.

Many of the ideas underlying the Active Streams approach have originated in early work done by

our group concerning on-line steering and visualization of high-performance scientific applications

[70, 121, 135, 118, 61] and resource-aware computing [71, 78]. Active Streams is itself part of

Infosphere [97], a much broader research effort aimed at creating the virtual spaces of interaction

for the post-PC era of computing.

The idea of “activity” has been widely used in systems over the last ten years, in projects ranging

from message-based communication for parallel computers [137] to wide-area services location [133].

To our knowledge, ours is the first approach to make consistent use of this concept throughout its

model and supporting framework.

Distributed adaptation can be application-transparent or application-aware and can occur at

the system or application levels. Protocol Boosters and Transformer Tunnels support transparent

network adaptation at the protocol level through the insertion of functional units in the datapath

for the incremental construction of protocols [43], or the creation of tunnels in order to deal with

problematic links [126]. Such systems can cope with localized changes in the underlying network

but cannot adapt to behaviors that differ widely from the norm.

More general than the previous approaches and also complementary to our work, Active Networks

[130] provide an infrastructure that allows application code to be attached to individual packets or

deployed over the network routers. Although this approach provides a very general adaptation

mechanism, its deployment requires significant changes to the existing network infrastructure.

Proxy-based solutions [152, 48, 10] have demonstrated the potential benefits of using the process-

ing power available on the datapath, as they depart slightly from the basic client/server model by

introducing a third entity, the proxy server. New environments provide additional processing units
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in the datapath, a potentially greater number of idle hosts and a longer, more complex network

connecting clients and servers. These characteristics indicate the need for more a general, multi-

point approach to adaptation. Although multiple proxies could be distributed over the datapath,

the paradigm provides no assistance in making them cooperate.

Badrinath et al. [9] present a conceptual framework for adaptive software systems that synthesize

the commonality of various projects the authors have been involved with. Our Active Streams model

has much in common with the proposed framework as both advocate dynamic adaptation over the

datapath to changing environmental conditions and application requirements. In contrast to Active

Streams, their model associates application specific adapters with their equivalent of our Active

Streams Nodes (Adaptation Agencies) instead of with the actual data streams. We have opted to

associate streamlets with streams, as streamlets are location-independent and their mapping onto

nodes is determined at run-time in response to changing environmental conditions.

Conductor [150] provides an application-transparent adaptation framework that allows multiple

adaptation modules to be spread along the datapath between application and services. Although its

transparency insures backward compatibility, it also limits its flexibility. In contrast to this, Active

Services [7] allows client applications to explicitly start one or more services on their behalf that can

transform the data they receive from end services but it does not provide for dynamic adaptation

to changing environment characteristics or application requirements.

The goal of adaptive distributed approaches is to provide good end-to-end services, where the

end points are located in applications. Without considering the applications’ and their users’ needs,

no adaptive solution at the network level alone can solve the entire problem. Ninja [56], CANS [49]

and Active Frames [84] are three projects that, as Active Streams, take an application-level approach

to adaptation.

CANS [49] is an application-level framework for injecting application-level functionality into the

datapath. The CANS infrastructure is closely related to Active Streams as both support the dynamic

composition of application functionality over datapaths as well as their run-time adaptation to

changing environmental conditions. CANS proposes an interesting extended-type-based composition

to automate component selection based on link characteristics. Despite the high-level similarities,

both approaches differ in aspects that include: the Active Streams focus on wide-area, heterogeneous,

and highly-dynamic environments; its adoption of event-based techniques for component integration;

and its target on high-performance applications.

Closely related to our work is the Active Frames approach, as proposed by Lopez and O’Hallaron [84],

for building heavy-weight services such as scientific visualizations. In Active Frames, each frame in-

cludes both the data and code necessary for processing it. Active Streams, in contrast, adopts a

demand pull-based approach to code distribution. Our reasoning is that (1) for lightweight frames,

the overhead of sending code with each frame may not be acceptable, and (2) in our experience

with scientific visualization and ubiquitous applications, a common set of functionality is typically

applied across multiple frames, permitting the amortization of its deployment costs. Finally, (3) it

is often desirable to have third parties be involved in defining and associating certain functionality

with current information flows. The Active Streams approach to code distribution permits this.
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Distributed applications executing in non-dedicated environments must be able to adapt to varia-

tions in resource availability. A number of research efforts have proposed resource-aware distributed

computing and investigated adaptation models [124] and the infrastructure support needed by such

an approach. Bolliger et al. [14] present a framework-based approach to developing network-aware

applications, concentrating on network monitoring and the mapping between application-level and

network-centric quality metrics.

The systems discussed above have demonstrated the value of customizing service functionality,

dynamically extending clients, and adapting applications and services to dynamically changing en-

vironments. Active Streams builds upon them, providing a comprehensive approach to constructing

adaptive distributed applications and services that exhibits these characteristics.

1.5 Organization

This section previews the remaining chapters and describes the overall organization of the disserta-

tion. Chapter 2 presents an overview of the Active Streams approach as well as a description of its

model’s key components. In Chapter 3 we demonstrate the use of Active Streams through two sample

applications: an active storage utility for scientific collaboration and an active video-stream system.

The Active Streams supporting framework, its design and details about its current implementation,

are presented in Chapter 4 and Chapter 5. Chapter 6 presents our evaluation results. Chapter 7

discusses a wide variety of related research in greater detailed than the presented in this chapter.

Finally, Chapter 8 summarizes the conclusion of this dissertation and highlights opportunities for

additional research.



Chapter 2: Active Streams

This chapter presents the Active Streams middleware approach to building adaptive distributed

application and services. The approach facilitates the construction of new distributed systems by

considering the contents of the information flowing across the application and its services, by adopt-

ing a component-based model to system programming, and by enabling the adaptive deployment of

system components within a distributed system.

Central to our approach is the abstract concept of active streams. Streams are sequences of self-

describing application data units flowing through the network, between applications’ components

and services. These streams are made active by the attachment of functional units that operate and

modify the streams’ contents. As is the case with the Active Network Initiative [130] this computa-

tional model supports the concept of plumbing components within a programmable infrastructure,

but restricts the programmability to application-level services, and does it in a location independent

way that enables adaptation through re-deployment of the functional units. In the following sections

we provide a brief overview of the Active Streams approach and discuss various aspects of it in more

detail.

2.1 Introduction

We model distributed systems as composed of applications, services, and data streams. Services

define collections of operations that servers can perform on behalf of their clients. Data streams are

sequences of typed, self-describing application-specific data units, such as movie frames, complex

data structures containing chemical concentration levels in an atmospheric model, or simple reports

on stock values. Stream types are described by C-style structures made up of atomic (including

integers, floats, and null-terminated strings) and previously defined structured data types.

Data streams are made active by the attachment of application- or service-specific functional

units, called streamlets (Figure 3). Streamlets are self-contained, location-independent functions

that each perform a particular activity. They operate on records arriving on their incoming streams

and generate records placed onto their outgoing streams. Active Streams adopts an event-based

or implicit invocation architectural style for system composition [51, 52]; with this approach a

component can invoke another one without needing to know its name by simply announcing the

occurences of certain “events” in which the other component has registered interest. Active Streams

are realized by mapping streamlets and streams onto the resources of the underlying distributed

platform, seen as a collection of loosely coupled, interconnected computational units. These units

make themselves available by running as Active Streams Nodes (ASNs), where each ASN provides a
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Figure 3: Active Stream.

well-defined environment for streamlet execution. ASNs configure themselves into overlay networks

over which Active Streams are deployed. Clients explicitly select the ASN overlay network they wish

to use and connect to it through a close (in network sense) ASN.

While the network has traditionally been seen as transporting data between end points, Active

Streams extends this notion to enable applications and end services to dynamically inject application-

specific components into it. An active stream can thus be seen as a description of a processing

sequence used in a connection between end-points.

2.2 Streamlets and Stream-Based Programming

Active Streams adopts a dataflow-based programming model much like those used in signal pro-

cessing [82, 53], parallel databases [34, 55, 147], and more recently, cluster file I/O [8]. A system is

expressed as a directed graph of large-grain nodes, each a collection of sequential work that execute

from start to finish without synchronization, and edges that depict the asynchronous flow of data

from one node to the next. The topology of the graph defines the flow of data units from sources to

sinks, implicitly defining the application’s software architecture.

Large-grain dataflow provides a natural description for many data processing applications, with

each node representing a function to be performed on an infinite stream of data that flows on the

arcs of the graph. The streams of data can be generated by sensors sampling the environment at

periodic rates, by trackers of application-level state transitions in legacy software, or by monitors

reporting researchers of important changes to scientific models. The dataflow methodology facilitates

the understanding of the processing performed by depicting the structure of the algorithm.

Applications and services are extended or customized, following a component-based approach,

through the attachment of a set of one or more functional units or streamlets. The idea is to create

systems that are easier to understand and reason about than those that explicitly send/receive

messages [142]. Streamlets are self-contained code units that can perform a particular activity.

They are the basic unit of composition in Active Streams. Streamlets operate on typed records

arriving on their incoming streams and generate typed records that placed onto their outgoing

streams. The queues associated with incoming and outgoing streams are provided by the streamlet’s

execution environment. These queues decouple the streamlets’ execution by introducing explicit

control boundaries and providing rate-matching between them. Streams in Active Streams are
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similar to channels in a Kahn process network [74], but differ from these in the semantics of stream

reads. While a stream’s data units are read exactly once per sink, as with Kahn’s channels, each

of the possible multiple sinks attached to a single stream will have its “own” copy of the stream.

This is intended to simplify the coordination process required for the insertion of a streamlet into

an ongoing stream, since the original streams can remain active as long as needed (Figure 4).

Streamlets are registered with the runtime system with an associated set of conditions for their

activation. Such conditions are currently stated as the minimum set of data units (threshold)

that must be available per incoming stream before streamlet execution. A streamlet is eligible for

execution whenever all of its input streams are over threshold. More elaborate triggers are possible,

given the information available to the execution environment, but this is left as a topic for future

exploration.

An example of a streamlet is given in Figure 6. This streamlet takes its inputs from a single

stream of PPM frames and produces an output stream of PGM frames. Each data unit placed into
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{

int col, row, indx, outIndx, tmp;

output.ppm1 = input.ppm1;

output.ppm2 = ’5’;

output.width = input.width;

output.height = input.height;

indx = 0;

outIndx = 0;

for (row = 0; row < input.height; row = row + 1) {

for ( col = 0; col < input.width; col = col + 1) {

tmp = (0.299 * input.buff[indx] + 0.587 * input.buff[indx+1] +

0.114 * input.buff[indx+2]) + 0.5;

output.buff[outIndx] = tmp;

indx = indx + 3;

outIndx = outIndx + 1;

}

}

output.size = output.width * output.height;

}

Figure 6: A streamlet that converts PPM to PGM frames.

the output stream is the “black and white” rendering of the, in order, corresponding incoming data

unit. The quantization formula used is 0.299r + 0.587g + 0.114b.

Streamlets can be obtained from a number of locations; they can be downloaded from clients,

servers, or retrieved from a streamlet repository.

Summarizing some characteristics of streamlets:

1. They consume and produce typed records.

2. They are passive, moving data from input streams to output streams in a demand-driven

fashion. They are activated once the required input records are available.

3. They consume and produce data at the granularity of an integral number of application-specific

units.

4. Streamlets can store small amounts of state in static variables that persist for the streamlet’s

lifetime in a node. This soft-state can be reconstructed simply by restarting the streamlets.

Given a semantically equivalent sequence of input records, a streamlet always produces a

semantically equivalent sequence of output records.

5. Each streamlet has a unique ID, a cryptographic hash (e.g. SHA-1 [132] or MD5 [115]) of the

streamlet’s code.

The process of attachment of streamlets to streams defines a directed acyclic graph that serves as

a set of constraints to the dynamic mapping algorithm of functional components to computational

devices.
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2.2.1 Error Handling

An important issue with Active Streams is error handling. The addition of distributed programming

at multiple dynamically chosen points complicates exceptional conditions and error detection and

handling. We adopt the use of exceptions to deal with this.

To raise an exception is to signal an exceptional condition. To catch it is to handle it – to

take whatever actions are necessary to recover from it. Raised exceptions are published on a special

exception channel associated with each stream. Applications can subscribe to this exception channel

and define functions to catch raised exceptions.

2.3 Implicit Invocation

Traditionally, in a system in which components’ interfaces provide a collection of procedures or

functions, components interact with each other by explicitly invoking those routines. Recently there

has been considerable interest in event-based or implicit invocation as an alternative integration

techniques for system software [103, 54, 38, 142].

The idea behind implicit invocation is that instead of invoking a procedure direcly, a component

can announce one or more events. Other components in the system can register interest in an event

and associate a procedure with this. This procedure will then be “implicitly” invoked by the event

announcement.

Among other importan benefits, implicit invocation provides strong suport for software reuse and

system evolution. Any component can be introduced into a system simply by registering it for the

appropriate events, and components can be replaced by newer ones without affecting the interfaces

of related components in the system.

This architectural style of integration is naturally supported by publish/subscribe systems, where

a number of systems components transmit and/or receive pieces of information, called messages

(events notifications or simple notifications), in response to events occurrences. A component that

detects events and sends messages is commonly refer to as a publisher, source, or informer; while

one that receives messages is refer to as a subscriber, sink, or listener. As a module can, at any time,

invoke and be invoked by other modules, a component can act as both a publisher and a subscriber.

2.4 Service and Service Customization

In general, a service defines a collection of operations a server can perform on behalf of its clients.

The task of building and maintaining services is challenging in part because of the need to satisfy

dynamically varying clients requests, on widely heterogeneous environments, while simultaneously

preserving the services’ essential properties of scalability, availability and fault-tolerance.

A well-known issue with today’s services is what is sometimes called “the client-level server”

problem [18]. Traditionally, systems are vertically integrated in an attempt to provide entire solutions

to clients’ needs. Vertically integrated systems, however, often make it difficult if not impossible

for a user to obtain exactly the service she requires (such as lower resolution on a video stream, for

displaying in her PDA, or information on stocks trading outside a certain range). Faced with the
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inflexibility of such services, users end up constructing application-specific servers that act as clients

of a default server.

Active Streams supports the notion of “value-added” services, more specifically, in-session dis-

tributed service extensions [54], by which we mean run-time no persistant extensions. The function-

ality of services in Active Streams is reduced to a minimal required set of appropriate abstractions,

flexible enough to allow the construction, through extensions, of arbitrarily customized versions of

them. Applications can build their customized services, extending them at the granularity of indi-

vidual procedures or modules, through the attachment of streamlets that service programmers or

other users make available.

2.5 Adaptation in Active Streams

Active Streams supports three forms of adaptation to deal with dynamic changes in the environment

and/or the behavior of the application itself (see Figure 7): (1) active stream configuration, where the

composition of an active stream is modified through the attachment/detachment of streamlets, (2)

active stream re-deployment, where the streamlets composing a given active stream are re-deployed

over the available computational units on the datapath, and (3) streamlet parameterization, where

the functionality of a streamlet attached to an active stream can be fine-tuned by the run-time

update of a selected set of parameters.

2.5.1 Active Stream Configuration

Coarse-grain adaptation can be obtained through the attachment/detachment of streamlets that

operate on and change a data stream. As in many extensible systems, an event-based invocation

mechanism is used [127, 103]. With this mechanism, extensions are designed as events handlers,

where any component of the system may raise an event upon the occurrence of some system activity,

at which time the corresponding extension is processed. The binding between an event and its

handler can be dynamically altered. Therefore, streamlets can be seen as event handlers invoked by

to notifications issued over their incoming streams.

2.5.2 Active Stream Re-Deployment

Adaptation can take place through the dynamic re-deployment of streamlets over the computational

units available on the datapath. Mappings are re-evaluated when interesting changes on resource

demand or availability occur. Since what’s “interesting” typically depends on the particular ap-

plication at hand, Active Streams resource monitoring and its adaptation policy are themselves

customizable.

2.5.3 Streamlet Parameterization

At a finer grain, the functionality of streamlets can be modified through parameterization, by re-

motely updating the contents of blocks of data associated with streamlets in a push-type operation.

As an example consider the streamlet in Figure 8.
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Figure 7: Types of adaptation in Active Streams.

This streamlet would filter out any record with ‘range’ outside (LOWEND, HIGHEND). If a

client wanted to change this range it could potentially detach the streamlet and attach a new one

with the desired range. A more natural solution is to associate with the streamlet a parameter block

that will hold the high and low bounds of the range. The range can then be dynamically updated

as needed. Figure 9 shows the new parameterized streamlet.

Another example of a parameterized streamlet is given in Figure 10. This streamlet takes its

input from two streams of PPM frames and produces an output stream of PPM frames. Each data

unit placed in the output stream is the mix of two incoming data units using a fade factor provided

as a parameter. The fade factor parameter may be in the range from 0.0 (only the first data units)

{

if ((input.range > LOWEND) || (input.range < HIGHEND)) {

return 1; /* submit record into output stream */

}

return 0; /* do not submit record */

}

Figure 8: A streamlet that passes only records with ‘range’ in a specified interval.
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{

if ((input.range > param.range_lowend) ||

(input.range < param.range_highend)) {

return 1; /* submit record into output stream */

}

return 0; /* do not submit record */

}

Figure 9: A simple example of streamlet parameterization.

{

int col, row, indx; long longfactor;

output.ppm1 = inputQueue[0].ppm1;

output.ppm2 = inputQueue[0].ppm2;

output.width = inputQueue[0].width;

output.height = inputQueue[0].height;

output.maxval = 255;

longfactor = param.fade * 65536;

indx = 0;

for (row = 0; row < inputQueue[0].height; ++row) {

for (col = 0; col < inputQueue[0].width; ++col) {

output.buff[indx] = inputQueue[0].buff[indx] +

(((inputQueue[1].buff[indx] - inputQueue[0].buff[indx])

* longfactor) >> 16);

output.buff[indx+1] = inputQueue[0].buff[indx+1] +

(((inputQueue[1].buff[indx+1] - inputQueue[0].buff[indx+1])

* longfactor) >> 16);

output.buff[indx+2] = inputQueue[0].buff[indx+2] +

(((inputQueue[1].buff[indx+2] - inputQueue[0].buff[indx+2])

* longfactor) >> 16);

indx += 3;

}

}

}

Figure 10: A streamlet that mixes two image frames with a specified ‘fade’ factor.

to 1.0 (only the second data units). Anything in between gains a smooth blend between the images

in the two data units.



Chapter 3: Example Applications

This chapter introduces two example applications with the intention of further motivating the Active

Streams approach and illustrating its use. We review the application of our ideas in the context of

collaborative research environments in Section 3.1, and sensor-rich spaces in Section 3.2, discussing

qualitatively how the application of our approach in those cases impacts end-to-end application

performance. The choice of applications is intended to demonstrate the flexibility of the approach

to accommodate a wide variety of data streams, client devices and network characteristics; as well

as different classes of applications, from high-performance scientific data processing to sensor-based

ones.

3.1 Collaborative Research Environments

The evolution of Internet Grid-style computing over the last decade has changed the way we tackle

complex problems. Computational science has evolved from single independent investigators to

encompass distributed, collaborative, multidisciplinary groups and massive computational science

datasets. Collaborative research environments are a concrete example of this. Projects like our

group’s Distributed Laboratories [50], NSF’s NEESgrid [93], and those part of NPACI’s Alpha [92],

aim to create virtual spaces where geographically dispersed communities of scientists can interact

to collaboratively solve problems by manipulating local and remote computational tools, analyzing

shared data, and discuss their results.

Among the tools needed for such collaboration are those used for the analysis and processing

of various real-time or archived data streams. The volume of these computational science datasets

has been one of the major limiting factors for this style of research. A dataset of coarse-grained

satellite data (with 4.4 km pixels), covering the whole earth surface and captured over a relatively

short period of time (10 days) is about 4.1GB; a finer grained version (1.1 km per pixel) contains

about 65 GB of sensor data. In medical imaging, the size of a single digitized composite slide image

at high power from a light microscope is over 7GB (uncompressed), and a single large hospital can

process thousands of slides per day [3].

The sample application used in our research is a global atmospheric climate model [76] developed

by our group in collaboration with scientists from the School of Earth and Atmospheric Sciences at

Georgia Tech. The model simulates the flow and interaction of various chemical species through the

stratosphere.

Experimental scientists using this model would like to explore the data generated and compare it

with archived outputs. As the simulation evolves, their foci of interest may change or they may want
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to share their finding and discuss their results with other researchers in other parts of the country.

Given the long duration of most experimental runs in this field, researchers would like to do this not

only from within their labs but also from desktops, laptop computers, or even from small portable

devices during their commute time.

During its execution the model produces a number of streams composed of application-level

units such as the concentration levels of certain chemicals in the atmosphere. These output streams

can be grouped by chemical components, atmospheric level, or geographic location, and can be

made available through a directory service to simplify their exploration. Since the number and

characteristics of these streams can vary over time, a proactive directory services allows researchers

to find out about these changes as they occur.

As researchers change their foci of interest and/or their execution environments, a number of

application-level customizations can be used to dynamically adapt to variations in resource demand

and availability. These application-level customizations can be applied, in the form of streamlets,

to the data streams flowing between the model and the researchers’ visualization interfaces. Table 3

provides some examples and a brief description of streamlets we have implemented for experimen-

tation with this application.

Table 3: Atmospheric model streamlets examples
Name Description Parameters
spec2grid,
grid2spec

conversions from/to spectral/grid repre-
sentation

-

runavg summarize record based on short running
average

vector length

levelout filter out records from a given range of
atmospheric levels

levels

gridred focus on a 3D area of interest 3D coordinates
smoother filters out no significant updates significance factor

It is to be expected that most researchers working on the same, or a similar application, would

require a common enough set of functionality to make code reuse beneficial. The deployment and

redeployment of independently developed streamlets is facilitated by a demand pull-based repository

service, a component of our framework.

3.2 Sensor-Rich Spaces

The advances in embedded processors, low cost sensor technologies, and wireless communication

are fragmenting the computing infrastructure and resulting in environments characterized by small,

low-cost computer devices that are virtually everywhere [22]. Samples of these types of artifacts are

already available as handheld computers, Internet-ready cellular phones, and wireless networks. As

they grow in number, such densely populated sensor-rich environments will become commonplace.

Sensor-rich environments will collect large amounts of information that must be combined and

processed before being delivered to interested end-users. An infrastructure is needed that can fa-

cilitate this, and as part of our research we have built an application to evaluate the use of Active
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(a) Available video
streams.

(b) A viewer displays a video stream and gives access to possible adaptations.

Figure 11: Command Center Interface.

Streams in this context.

In our application scenario, sources are cameras attached to unmanned vehicles and streaming

video images over wireless links to a set of one or more command centers. In this application,

streams are sequences of raw portable anymap frames (raw ppm or pgm) captured by a video

device. Multiple video streams originate at, potentially, multiple vehicles can be simultaneously

available at any given time. As the number of available video streams may change over time, so can

the users’ foci of interest. The limited bandwidth availability, property of this environment, requires

that trade-off be made between image quality and frame rate across multiple video streams. The

use of application-level stream customization to enable this type of adaptation is our motivation in

this context.

Our experimental setup includes a number of portable computers with video-devices attached to

them and connected over wireless links to a set of client computers acting as our command centers.

Our sources are USB cameras that we access through VDev, a library we have built for this purpose.

The command center interface is built in Java and connected to our infrastructure making use of

the Java Native Interface.

We use our VDev library for accessing video devices in Linux. VDev allows users to fetch and

control the image streams captured by USB video cameras connected to a Linux PC box. Through

the VDev client interface, users can also configure common parameters such as: frame rate, image

size, brightness, contrast, hue, and color.
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Figure 12: A number of adaptations are applied over a sequence of frames composing a video stream.

There are a variety of application-level customizations that can be used to deal with the re-

stricted bandwidth availability in the context of this application. Ideally, applications (or the end-

users themselves) should be able to dynamically select and apply certain transformation in order

to reduce resource consumption or better suit their clients’ environments (Figure 12). We have

implemented an interesting set of possible customizations for experimentation, and Table 4 provides

a brief description of their functionality. Streamlets attached to ongoing streams operate on them

and modify their characteristics (by converting an image from color to gray, reducing the required

bandwidth to a third; by cropping the interesting part of it, resulting in additional savings; etc).

To make this available to end-users we have adopted an extensible-service paradigm for interaction.

Each attachment of a streamlet to an existing stream creates an alternative service, an additional

(virtual) camera, which other users can utilize. We achieve this by using PDS to update the list-

ing of cameras seen by all clients (real or virtual) as soon as they become available or disappear.

Without a proactive interface a researcher will be restricted to poll the directory service in the hope

that somebody, at some point, will create the stream she wants to use; thus generating unnecessary

network traffic and processing loads at both client and service.

Applications such as our sensor-based example or collaborative research environments like the

one described in Section 3.1 execute in mostly no-dedicated and highly heterogeneous environments.

Since the availability of resources in such environments often determines overall application per-

formance and, thus, users’ experiences, adaptivity is necessary for efficient and more predictable

executions. Adaptive applications require prompt information about their own behavior and the

status of the execution environment. The Active Streams framework provides this needed function-

ality through ARMS, a push-based customizable service for resource and self-monitoring (ARMS).

Table 4: AMS Streamlet examples
Name Description Parameters
concatenate concatenate two frames concatenation order
crop crop a portable bitmap area coordinates
edge edge-detect a portable graymap -
enlarge enlarge a frame N times enlargement factor
reduce reduce a frame N times reduction factor
grey converts a portable pixmap frame to gray -
mix blends two frames fade factor
half-rate drops every-other frame -
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Through ARMS, applications can collect a selected subset of the data made available by distributed

monitors. These monitoring streams can be integrated to produce application-specific views of

system state and decide on possible adaptations.

3.3 Summary

This chapter has demonstrated the flexibility of the Active Streams approach to accommodate a

wide variety of data streams, client devices and network characteristics; as well as different classes

of applications. We have shown how the different component of our framework facilitate the con-

struction of dynamic customizable services, run-time extensible applications, and applications and

services that are able to dynamically adapt to changes in themselves and their environments.



Chapter 4: Active Streams Framework

This chapter presents the Active Streams supporting framework for building distributed applica-

tions and services. Successfully enabling dynamic distributed adaptation requires several important

services. Our current Active Streams framework is comprised of four core components: the Active

Streams Node, the Streamlet Repository Service, the Active Resource Monitoring Service and our

Proactive Directory service. We describe each of them after giving a bird’s-eye view of the entire

framework.

4.1 Overview

Active Streams are realized by mapping streamlets and their associated streams onto the resources

of the underlying distributed platform, seen as a collection of loosely coupled, interconnected com-

putational units.

Computational units make themselves available by running as Active Streams Nodes (ASNs),

where each ASN provides a well-defined environment for streamlet execution. Similar to a virtual

machine, an ASN acts as a manager of the streamlets’ required resources and provide uniform inter-

faces for the general administrative tasks needed to support their execution. In contrast to classical

virtual machines, ASNs do not interpret streamlets’ code but rely on dynamic code generation for

their efficient execution.

Since Active Streams customized services and applications are built by assembling possible inde-

pendently developed components, their deployment and re-deployment processes requires a mech-

anism that support their storage and distribution. The Active Streams Framework includes the

Streamlet Repository Service (SRS), a scalable distribution service for safe management, transport,

and storage of streamlets.

Support for distributed adaptation requires ways in which an application can be notified of any

important changes in the environment. The Active Streams framework provides a push-based/active

customizable resource monitoring service (ARMS). Through ARMS, an application inherits the

mechanisms needed for providing introspection, thus allowing the application designer to focus on the

application-specific logic. Moreover, an application using ARMS can easily redefine its monitoring

views by adapting/replacing filters used for monitoring while the system is running, perhaps in

response to workload and/or environment changes.

As is common in distributed systems, a directory service provides the “glue” for the Active

Streams framework. However, the number and the dynamic nature of most relevant objects in Active

Streams environments makes the passive client interfaces of classical directory services inappropriate.
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Figure 13: Active Streams Framework.

Thus, the Active Streams framework includes a proactive directory service (PDS) that supports a

customizable interface through which clients can register for notification about changes to objects.

The level of detail and granularity of these notifications can be dynamically tuned by clients through

filter functions instantiated at the server or at object owners.

These four components: the Active Streams Node, the Streamlet Repository Service, the Active

Resource Monitoring Service and our Proactive Directory service, comprise the core of the Active

Stream framework (Figure 13).

4.2 Active Streams Nodes

Computational units make themselves available by running as Active Streams Nodes (ASNs), where

each ASN provides a well-defined environment for streamlet execution. Much like a virtual machine,

an ASN decouples the application- and streamlet-specific functionality from the general administra-

tive tasks needed to support streamlet execution, such as scheduling, monitoring and reconfiguration.

An ASN also provides the basic resources needed by streamlets and enforces constraints on how those

resources can be used.

An ASN could be assigned to serve a particular application or a set of them. By adopting the

first approach, the costs of inter-streamlet and streamlet-ASN communication could be minimized

and many protection issues could be avoided. On the other hand, assigning an ASN to a set of

applications would allow us to do cross-application adaptations. Since the trade-offs presented by

both options make the selection of the “right” approach far from clear, we have opted for a flexible
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solution that will allow us to further investigate this topic. In our current implementation, ASNs

register themselves with a set of other ASNs, with ASNs in a give set comprising an overlay network

structured as a fully-connected graph. When an ASN is started at a particular host, it is given the

names of the overlay network(s) it is supposed to join.

4.3 Streamlets

Since the environments we are targeting are heterogeneous, the architecture and/or the operating

systems of two nodes serving as ASNs may differ. While the Active Streams middleware provides

for interoperability, there is still the streamlet code to consider. Truly location independent code

must run on the hetereogenous collection of machines that are common in today’s computational

environments.

In Active Streams we have opted to support a restricted programming language to insure that

streamlets can be dynamically deployed and efficiently executed across heterogeneous environments.

In addition, this approach, combined with the use of cryptography, also allows us to guarantee a

streamlet’s safe execution. Streamlets can be created using ECL, a subset of a general procedural

language, and dynamic code generation is used to create a native version of the given streamlet on

the target host. ECL’s dynamic code generation capabilities are based on Icode, an internal interface

developed at MIT as part of the ’C project[108]. Icode is itself based on Vcode[40], also developed

at MIT by Dawson Engler. Vcode supports dynamic code generation for MIPS, Alpha and Sparc

processors, and has been extended to support MIPS n32 and 64-bit ABIs, Sparc 64-bit ABI, and x86

processors [38]. ECL, although extensible, is currently a subset of C, supporting the C operators,

for loops, if statements and return statements.

For experimentation, however, and in order to consider potential useful extentions to ECL, we

have also enabled the use of general C-based shared-object modules.

4.4 Streamlet Repository Service

Instantiating (and later adapting) a given active stream requires the deployment of its associated

streamlets within an ASN’s overlay network. Since active streams are composed of possibly inde-

pendently developed components, such deployment and re-deployment involves multiple component

producers and consumers that may be geographically and organizationally dispersed.

Because traditional configuration management systems have focused on the development activity

of source code control, they lack support for deployment tasks other than configuration and installa-

tion. The Active Streams Framework includes a repository services that offers the basic functionality

needed for these tasks. In this section we describe such services, begining with a discussion of its

design goals.

4.4.1 Streamlet Distribution

Code distribution in Active Streams must support the dynamic extensibility and adaptability of the

approach while also providing the performance and security properties of more static approaches
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that can resort to ready-loaded nodes and/or static linking. Performance is important because,

assuming an efficient streamlet execution environment, distribution will be a determinant factor on

the overall run-time overhead of our approach. Security is a natural concern with any approach that

involves some form of mobile code.

Note that these requirements are not exclusive to Active Streams. As more systems are built using

distributed component technology, including proxy-based systems [48], distributed objects [95, 128],

and active networks [130], the “missing component” problem will become increasingly common.

A good scheme for streamlet storage and distribution must be efficient, flexible, and adaptable. It

must scale to wide-area settings, minimize (re-) deployment time, and make it difficult to compromise

the system. The Streamlet Repository Service for management, transport, and storage of streamlets

meets these goals.

While many alternative designs are possible, we have opted for a scheme where streamlets are

stored in distributed locations (which can be located through a directory service such as PDS) upon

registration, and delivered to interesting nodes upon request. Each requesting node maintains a

streamlet cache, keyed by streamlet ID, that contains all streamlets loaded into the node and could

potentially be pre-loaded to reduce setup cost.

The Active Streams’ Streamlet repository service provides for:

• insertion,

• retrieval and

• removal of streamlets with given set properties, as well as

• queries on streamlets available with a given set of properties.

4.4.2 Streamlet Description

Each streamlet is described by a set of properties (Table 5) that include most of those advocated by

the Open Software Description Format (OSD), an application of XML to support automated software

distribution environments proposed by Marimba Incorporated and Microsoft Corporation [66]. We

have included an attribute-value list to cope with less common or unforeseen attributes.

Table 5: Streamlet description fields in the repository
Field Example Note
Name CropImage-1 Name and version
UID MD5 string Cryptographic hash
OSRelease SunOS-5.7 uname -rs
Processor SPARC uname -p
Content CSObj Lang. and format
Author mafalda@quino.net Author’s email
Description Reduce image Descriptive comment
Attribute list << a1 = v1 >< a2 = v2 >> List of attr-value pairs
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4.4.3 SRS Architecture

The Streamlet Repository Service (see Figure 14) is composed of a number of repository servers, and

a client library that can be linked to any application, making it thus capable of fetching components

from these servers. The client-side library is sufficiently small to be used in end-devices with limited

resources such as PDAs.

Each SRS client maintains a streamlet cache, keyed by streamlet ID, that contains all information

on the streamlet as well as the streamlet’s code.

There are at least two ways by which a client application can find a streamlet repository server.

The client could be configured with a list of unicast repository server addresses or could come with

an anycast address [105]. This anycast address or the list of unicast addresses can be requested

through a directory services such as PDS.

4.4.4 Safety Considerations

SRS clients fetch streamlets for executing them in their hosts. Without the proper precautions,

a node may import and run unsafe code, thereby opening the host to abuse through misuse of

its resources. Solutions to the problem of unsafe code fall into three categories [64]: user control,

implicit trust, and verified access. User control is the simplest to implement and the one currently

used in mobile code systems such as Java. With this alternative the user controls the resources that

the imported code component may access, either by setting up access control lists for the resources,

or by responding to dialog boxes that describe the type of resources the component requires and

allows the user to decide whether or not to grant the request. There are several problems with this

approach: first it may require excessive user interaction to control the resources available to the

component; second, any non-trivial component will need to access resources in a potentially unsafe
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manner. Asking the user to make an intelligent decision about each possible required access seems

unreasonable.

At the other extreme from user control is implicit trust. In this solution a component is considered

safe if it has originated at a trusted entity (verified through the use of digital signatures, for example).

Since it is infeasible for the user to carefully examine the source code to check its correctness and

automatic method will work the only feasible way of running a component’s code is to implicitly trust

it, and therefore the person or entity that created it. Although trusting a component based only on

its source may seem incautious, it is not different from what is actually done with shrinkwrapped

software.

Although the use of digital signatures permits a client application to verify the identity of the

producer of an imported code, it does not guarantee that this code is safe to execute. Thus it may

be necessary to resort to some form of safety checks in order to verify a component’s integrity before

executing it.

An interesting alternative is the use of a third party to do the verification of imported code

(Hartman et al. [64] compare this model to the use of the Underwriters Laboratory [69] safety

certification on manufacured products). With an equivalent assurance, a client application can trust

the imported module and run it without re-verification.

We address security in SRS through policy and cryptology. Authors and streamlets have unique

IDs. We use authors’ email addresses as their IDs. Each streamlet has a unique identifier which

consists of a cryptographic hash of the streamlet code. This scheme eliminates the need for a

centralized streamlet naming system; guarantees that the streamlets attached to streams are those

specified by the user, assuming that the configuration commmand has not been modified on the wire

and that the ASN has not been compromised; and eliminates code versioning problems. In addition,

each configuration command carries a pre-computed hash key that can be used to rapidly look up

the streamlets’ code in a cash. Since each ASN can reliably check the source of a streamlet and the

identity of its developer, it’s able to decide, based on that information, whether or not it should

accept and execute the streamlet’s code.

4.5 Active Monitoring of Resources

Many distributed applications, such as those targeted by Active Streams, are expected to handle

dynamically varying demand on resources and to run in large, heterogeneous, and dynamic environ-

ments, where the availability of resources cannot be guaranteed ’a priori’ – all of this while providing

acceptable levels of performance. Dynamic variations in resource usage are typically due to applica-

tions’ data dependencies and/or users’ dynamic behaviors, while the run-time variation in resource

availability is a consequence of failures, resource additions or removals, and most importantly, con-

tention for shared resources.

An attractive way of dealing with this variability is making applications resource-aware [57],

i.e. making them able to periodically adapt to environmental changes by adjusting their resource

demands in application-specific ways. The Active Streams framework includes an Active Resource

Monitoring Service, ARMS, aimed at facilitating the task of building resource-aware applications.



4.5. ACTIVE MONITORING OF RESOURCES 28

In this section we present ARMS: its design goals and architecture.

4.5.1 Active Resource Monitoring Service

Central to the process of providing resource-awareness is the collection, aggregation, and processing

about the execution environment. Although much of the information needed for this end is ready

available in commercial middleware, the ways of obtaining it are not well documented and are

different for each piece of information and/or platform. Additionally, applications have no option

but to poll the system for this information without any guarantee that it will be of any use and with

the hope that their polling frequency will match that of significant changes to the environment.

ARMS supports a customizable push-based interface to resource monitoring intended to solve

some of these problems. ARMS client applications and/or the adaptive runtime system can select

a subset of the data made available by distributed monitors, and integrate that data to produce

application-specific monitoring metrics and decide on possible adaptations. Different objects (in-

cluding devices) are the sources of monitoring data. ARMS’ clients express interest in different

monitored objects by selectively registering themselves with the streams associated with those ob-

jects.

Applications are not generally interested in all raw data reported by the different monitoring

objects at potentially high volumes. Instead, each application needs a subset of the available data,

at different times, and commonly would like to integrate different data to produce application-specific

monitoring information (that will match application-specific adaptation options). An application

using ARMS can easily redefine its monitoring views by adapting/replacing the filters used for

monitoring while the system is running, as its workload and environment change. In this manner,

applications have an additional level of adaptation that would not be possible were the monitoring

and adaptation mechanisms coded statically for each of them.

In addition, as is the case with most monitoring systems for distributed environments [35, 149],

ARMS must provide adequate predictive accuracy; should be easily portable as to guarantee ubuiq-

uity; must be mostly resilient to failures, so common in wide-area environments; and should impose

as little additional load as possible on the monitored resources.

4.5.2 ARMS Architecture

Through ARMS an application inherits a significant amount of the mechanisms needed for providing

introspection [123], allowing the application designer to focus on the application-specific logic of

monitoring and adaptation. An overview of the ARMS architecture is presented in Figures 16

and 15.

Hosts of interest to applications must become ARMS nodes. Different objects (including devices)

at ARMS nodes are the sources of monitoring data. ARMS nodes connect to other nodes in specific

sets or ARMS networks. ARMS clients connect to an ARMS network through an ARMS node that

could reside on its own or another host. ARMS clients express their interests in different monitored

objects by requesting state reports on such objects or selectively registering themselves with the

streams associated with those same objects. Application request for continuous reports follow a
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lease model. Requests are to last for a user-specified (but limited) time span after which they will be

canceled. Previously issued requests can be re-issued, before lease expiration, by using the request

number. Correspondingly, a non-expired request can be canceled using this same number.

ARMS clients can select a subset of the data made available by different sensors, and integrate

that data to produce application-specific monitoring metrics and decide on possible adaptations. In

addition, filters in ARMS can be instantiated directly into the source of monitoring data streams

with the corresponding savings in bandwidth, and in sink or source processing.

4.5.3 Sensors and Forecasting

ARMS obtains monitoring information from sensors. In the case of resources, sensors report the

observed performance that the resource is able to deliver at the time of measurement. Measurements

are taken at the application level, since the intention is to forecast actual application performance,

and this is done using standard operating systems calls (such as vmstat and uptime) to facilitate

portability.

Currently, ARMS nodes report information on memory availability, CPU load, disk free space,

up-time, and number of users currently logged on, as well as host name, IP, number of CPUs, and

configure triplet (as reported by GNU config.guess). Status reports of network paths between two

ARMS nodes include latency and bandwith (see Table 7). ARMS uses a combination of passive and

active sensors as needed [148]. Passive sensors exercise an external system utility, such as uptime,

and scan the utility’s output to obtain the required information. Active sensors, on the other hand,

must conduct a performance experiment, such as timing a message exchange between two hosts, to

measure the availability of the monitored resources.

ARMS sensors maintain histories of measurements. In order to forecast performance availability,

ARMS includes a library with a number of predictive algorithms including mean-based methods

such as running, trimmed, and sliding window averages as well as minimum, maximum, median and

support to build autoregressive models.

4.6 Extending Directory Service

A very important component of most distributed systems infrastructures is a directory services

that provides information about different objects in the environment, including services, resources,

applications, and people, to other applications and their users. Well-known examples of directory

services includes the Metacomputing Directory Service (MDS) [44] for Globus-based environments

and the Intentional Naming System (INS) [2] for applications developed in the Oxygen [86] pervasive

computing project. Directory services in both types of environments must support sophisticated

object descriptions and query patterns, operate in highly dynamic environments, and scale to an

increasingly large number of objects and users.

Recent research has addressed the limitations of current sevices, such as DNS and LDAP, origi-

nally designed for fairly static environments where updates are rare. Various research projects have

focused on different aspects including their object descriptions and query languages and/or their

scalability. However, most directory services still offer traditional, exclusively ‘inactive’ interfaces,
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through which clients interested in the values of certain objects’ attributes must explicitly request

such information from the server. When object attributes are frequently updated, those clients who

need up-to-date information have no alternative but to query servers at rates that (at least) match

the rates at which changes occur.

We argue that an exclusively inactive interface to a directory service for these new environments

can hinder service scalability and indirectly restrict the behavior of potential applications [122]. In

response, we extend the interfaces of directory services with a customizable proactive mode by which

clients can express their interests in, and be notified of, changes in the environment.

The Proactive Directory Service (PDS) is an efficient and scalable information repository with

an interface that includes a proactive push-based access mode. Through this interface, PDS clients

can learn of objects (or types of objects) being inserted/removed from particular contexts (such as

addition or removal of services or devices) and/or about changes to pre-existent objects.

4.6.1 The Proactive Directory Service

A potential disadvantage of a proactive approach is the loss of control from the client’s perspective

since, after having registered its interest on changes to an object, it is then at the “mercy” of

the object’s owner. PDS clients can regain control by dynamically customizing these notifications

through filter functions instantiated at the server (or the object’s owner) and by tuning these filters’

functionalities via remote updates of some of their parameters. For expressiveness, PDS supports

an attribute-value-based description of objects, similar in spirit to that used by INS.

Proactivity is a well-established system design technique. Physical devices such as buses and

disks use interrupts as a proactive means of informing operating system kernels that a state change

has occurred, allowing kernels to avoid repeated polling. Write-through caches are ‘proactive’, in

that they ensure cache consistency without resulting in cache faults for applications that use such

data. The publish/subscribe paradigm of distributed system design, with its roots in non-distributed

reactive programming models, is another instance of proactivity, because peers in a publish/subscribe

or event-passing system proactively notify interested parties of state changes. Finally, the active

database [145, 89] approach and, in the world-wide web, Continual queries [83] propose proactivity

with motivations similar to those behind PDS.

The use of proactivity in directory services has some precedents in DNS NOTIFY [136] and

Ninja’s Secure Directory Service (SDS) [29]. Until recently, changes to a DNS zone (DNS zones are

contiguous subdivisions of a namespace) were propagated among the interested (replicated) name

servers through a pulling mechanism initiated by the replicas. In order to reduce the load imposed

on the master name servers, longer refresh times of the zone’s data were normally adopted, but that

benefit would come at the cost of long intervals of incoherence among authority servers whenever

the zone is updated. In response, RFC 1996 proposed a mechanism for prompt notification of zone

changes (DNS NOTIFY) through a proactive approach. Master servers can now inform slave servers

when the zone has changed through an interrupt “which it is hoped will reduce propagation delay

while not unduly increasing the masters’ load”. In SDS, services in the environment announce

(broadcast) themselves periodically on a well-known multicast channel. Clients can thus eavesdrop

on that same channel to hear what services are running and become aware of changes.
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4.6.2 Adding Proactivity to a Directory Service

Our use of proactivity in directory services is straightforward. With each object managed by the

directory service we associate a publish/subscribe channel for change notification and allow clients

to subscribe to it. Changes are reported to interested parties over notification channels in the form

of events. Examples of types of events include the creation or removal of an entry or changes to (the

attributes of) an existing entry in the directory.

The primary advantage to clients of pull-based interfaces is control. Pull-based interfaces allow

clients to manage when/if messages are sent and to anticipate replies (since the fact that a reply is

impending and the type of information the reply carries are both known). Proactivity allows clients

to trade control for performance, as message traffic is only generated when updates occur. As long

as updates occur infrequently, this lack of control is not significant. However, a client that registers

interest in an object that begins changing with unanticipated frequency soon finds itself swamped

with update messages. These update messages may not even be needed when they arrive, or may

only be needed depending on other application-specific factors; proactivity in this case does more

harm than good.

At first glance, providing a filter at the client to discard unwanted or unneeded updates might

seem enough. Although this does allow the application to ignore updates, the update messages

are still sent across the network, increasing the load on the server, the network, and the client.

Providing a single interface at the server to control proactive traffic is also insufficient, as different

clients interested in changes may have different criteria for discarding update messages.

A better approach allows client-specific customization of the update channel. To customize a

channel, a client provides a specification (in the form of a function) of what events it will be interested

in. The server then uses these specifications, on a per-client basis, to determine whether or not to

send the update event.

Preliminary evaluations comparing PDS with off-the-shelf implementations of DNS and LDAP

confirm the performance advantages derived from proactivity, for clients and servers (see Section 6.4).

For instance, we demonstrate experimentally that, contrary to common wisdom, the customization

of notification through filter functions executed by the directory server need not translate into an

overloaded server or result in excessive loads imposed on objects’ owners. Instead, it can improve

performance, as the additional filter code executed by the server or by owners is outweighed by gains

in performance due to the elimination of unnecessary message communications (i.e., executions of

protocol stacks).

4.6.3 PDS Concepts and Abstractions

In PDS, related information is organized into well-defined collections called entities. Each entity

represents an instance of an actual type of object in the environment and has an associated set of

properties, or attributes, with particular values.

Entities may be bound to names in different contexts and each context contains a list of name-

to-entity bindings. Contexts themselves may be bound to names in other contexts, building an

arbitrary directed naming graph.
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Figure 17: Domains, contexts and entities in PDS.
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Figure 18: Achieving proactivity: when the owner of an object updates any of the object’s attributes,
notifications are sent to all interested clients.

Since a single secular namespace does not scale well, PDS divides the global name space into

subspaces and assigns them to domains. Each domain implements its own namespace roughly as a

tree, a single ‘root’ context and a context for each vertex.

Each element in PDS, be it a domain, a context, or an entity, has associated with it an event

channel. The PDS interface allows clients to subscribe to the event channel for a particular object.

With registration PDS clients provide a function that serves as an event handler and is invoked

by the communications system when new events arrive. Each of the state-changing operations

implemented by PDS submits an event to the notification channel associated with the appropriate

object. When the owner of an object changes the value of some of the object’s attributes (such as

when ‘Woodstock’ is added to the ‘Peanuts’ cluster or ‘Rerun’ gets more memory), a change event

is submitted to the channel belonging to the entity representing it.

PDS clients are able to customize notification channels by supplying filter functions, written in a

portable subset of C, which are then dynamically compiled and installed at the server. Inside a filter

function, it is possible to examine the notification data to determine whether or not the notification

should be sent. For example, a notification corresponding to an update in CPU utilization in a given

host may only be useful to an application if the new value is outside a certain range (see Figure 19).

Notice that this customization is on a per-client basis; the actions and interests of one client do not

affect updates received by another.
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{

if ((input.cpuUsage < 0.1) || (input.cpuUsage > 0.6)) {

return 1; /* submit event into notification channel */

}

return 0; /* do not submit event into notification channel */

}

Figure 19: A specialization filter that passes only CPU-usage updates outside a pre-defined range.

4.6.4 PDS Architecture

The PDS architecture includes three main components: PDS clients, servers and object owners.

PDS clients want to discover available objects in the environment and become aware of any change

to them that could affect their functionality and/or performance. Object owners make their objects

available by publicizing them through the directory services. Servers act as mediators between clients

and objects’s owners.

Owners’ changes to their objects are published in the objects’ associated notification channels.

PDS clients can register interest in those changes by subscribing to the corresponding channels.

Subscribed clients can then customize these notifications by supplying filter functions which are

then dynamically compiled and installed at the server.

Filter functions are expressed in ECL, a subset of a general procedural language, and dynamic

code generation is used to create a native version of F on the server. For ECL’s details, the reader

is directed to Section 5.3.



Chapter 5: Implementation

This chapter describes the prototype implementation of the Active Streams Framework (a description

of its architecture was presented in Chapter 4). The framework, illustrated in Figure 20, is comprised

of four core components: (1) the Active Streams Node provides the environment for streamlet

execution; (2) the Streamlet Repository Service offers a pull-based service for code distribution; (3)

the Active Resource Monitoring Service provides the needed infrastructure for resource monitoring,

self-monitoring and adaptation; and last (4) the Proactive Directory Service acts as the framework’s

information repository providing an extended proactive interface more suited to the dynamism of

the targeted environments.

The performance and flexibility requirements of this infrastructure are satisfied by the use of

the Portable Binary I/O library (PBIO), an implementation of the Native Data Representation

wire-format. PBIO provides the low-level support for typed, self-describing communication units

required by the Active Streams approach. The framework relies on the ECho publish/subscribe

communication infrastructure [37] for data and control transport and as the basis for the Active

Streams implicit invocation mode of integration.

After presenting the implementations of the PBIO and ECho libraries as well as the current

realizations of streamlets, detailed descriptions of each component’s implementation are provided.

5.1 Native Data Representation and PBIO

This dissertation proposes a component-based approach to application/service programming for

highly heterogeneous and dynamic environments. This and related projects on tool- and component-

based approaches have increased the need for flexible and high performance communication systems.

High-performance computing applications are being integrated with a variety of software tools to

allow on-line remote data visualization [106], enable real-time interaction with remote sensors and

instruments, or provide novel environments for human collaboration [102]. There has been a grow-

ing interest among high-performance researchers in component-based approaches, in an attempt to

facilitate software evolution and promote software reuse [15, 104, 65]. When trying to reap the

well-known benefits of these approaches, the question of what communications infrastructure should

be used to link the various components arises.

In this context, flexibility and high-performance seem to be incompatible goals. Traditional

HPC-style communications systems like MPI offer the required high performance, but rely on the as-

sumption that communicating parties have a priori agreements on the basic contents of the messages

being exchanged. This assumption severely restricts flexibility and makes application maintenance



5.1. NATIVE DATA REPRESENTATION AND PBIO 36

ECho

PBIO

Proactive Directory

Active Streams Node

Active Resource M
onitoring

Streamlet

Streamlet

Streamlet

Stream
let Repository

Figure 20: Active Streams Framework

and evolution increasingly onerous. The need for flexibility has led designers to adopt techniques

such as the use of serialized objects as messages (Java’s RMI [146]) or the use of meta-data repre-

sentations like XML [138]. Both alternatives, however, have high marshalling and communications

costs in comparison to the more traditional approaches [16, 153].

We observe that the flexibility and baseline performance of a data exchange system are strongly

determined by its wire format, or how it represents data for transmission in a heterogeneous environ-

ment. Upon examining the flexibility and performance implications of using a number of different

wire formats, we propose an alternative approach that we call Native Data Representation.

In the following subsections we describe the NDR approach, and provide some details on its

implementation in the Portable Binary I/O library. PBIO provides the low-level flexible and high-

performance communication required by Active Streams.

5.1.1 Native Data Representation as a Wire Format

The idea behind Native Data Representation (NDR) is quite simple. We avoid the use of a common

wire format by adopting a “receiver makes it right” approach, where the sender transmits the data

in its own native data format and it is up to the receiver to do any necessary conversion. Any

translation on the receiver’s side is performed by custom routines created through dynamic code

generation (DCG). By eliminating the common wire format, the up and down translations required

by approaches like XDR are potentially avoided. Furthermore, when sender and receiver use the

same native data representation, such as in exchanges between homogeneous architectures, this

approach allows received data to be used directly from the message buffer eliminating high copy

overheads [116, 141]. When sender’s and receiver’s formats differ, NDR’s DCG-based conversions

have efficiency similar to that of systems that rely on a priori agreements to make use of compile- or
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link-time stub generation. However, because NDR’s conversion routines are dynamically generated

at data-exchange initialization, our approach offers considerably greater flexibility. The meta-data

required to implement this approach and the runtime flexibility afforded by DCG together allow

us to offer XML or object-system levels of plug-and-play communication without compromising

performance.

5.1.2 Marshalling and Unmarshalling

Minimizing the costs of conversions to and from wire formats is a known problem in network com-

munication [6]. Traditional marshalling/unmarshalling can be a significant overhead [32, 117], and

tools like the Universal Stub Compiler (USC) [99] attempt to optimize marshalling with compile-

time solutions. Although optimization considerations similar to those addressed by USC apply in

our case, the dynamic form of the marshalling problem in PBIO, where the layout and even the

complete field contents of the incoming record are unknown until run-time, rules out such static

solutions.

Marshalling. Because PBIO’s approach to marshalling involves sending data largely as it appears

in memory on the sender’s side, marshalling is computationally inexpensive. Messages are prefixed

with a small (32-128 bits) format token that identifies the format of the message. If the format

contains variable length elements (strings or dynamically sized arrays), a 32-bit length element is also

added at the head of the message. Message components that do not have string or dynamic subfields

(such as the entire message of Figure 21) are not subject to any processing during marshalling.

They are already in ‘wire format’. However, components with those elements contain pointers by

definition. The PBIO marshalling process copies those components to temporary memory (to avoid

destroying the original) and converts the pointers into offsets into the message. The end result of

PBIO’s marshalling is a vector of buffers which together constitute an encoded message. Those

buffers can be written on the wire directly by PBIO or transmitted via another mechanism to their

destination.

Unmarshalling. It is clear that the NDR approach greatly reduces sender side processing and

increases flexibility since it allows the receiver to make run-time decisions about the use and process-

ing of incoming messages without any previous knowledge of their formats. These benefits, however,

come at the cost of potentially complex format conversions on the receiving end. Since the format

of incoming records is principally defined by the native formats of the writers and PBIO has no

a priori knowledge of the native formats of the communicating parties, the precise nature of this

format conversion must be determined at run-time. Receiver-side unmarshalling thus essentially

requires conversions of the various incoming ‘wire’ formats to the desired ‘native’ formats, which

may require byte-order changes (byte-swapping), movement of data from one offset to another, or

even a change in the basic size of the data type (for example, from a 4-byte integer to an 8-byte

integer). While such conversion overheads can be nil for some homogeneous data exchanges, they

can be considerably high (66%) for heterogeneous exchanges.

PBIO’s approach to unmarshalling is based on dynamic code generation. Essentially, for each
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typedef struct small_record

{

int ivalue;

double dvalue;

int iarray[5];

} small_record, *small_record_ptr;

IOField small_record_fld[] =

{

{"ivalue", "integer", sizeof(int),

IOOffset(small_record_ptr,ivalue)},

{"dvalue", "float", sizeof(double),

IOOffset(small_record_ptr,dvalue)},

{"iarray", "integer[5]", sizeof(int),

IOOffset(small_record_ptr,iarray)},

{NULL, NULL, 0, 0}

};

Figure 21: An example of message format declaration. IOOffset() is a simple macro that calculates
the offset of a field from the beginning of the record.

incoming wire format, PBIO creates a specialized native subroutine that converts incoming records

into the receiver’s format. These native conversion subroutines are cached and reused based upon

the format token of the incoming record. Reuse allows the costs of code generation to be amortized

over many conversions. The run-time generation of conversion subroutines is essentially a more

dynamic approach to the problems addressed by tools like USC[99]. Systems that can rely upon

prior agreement between all communicating parties have no need for the extra dynamism we offer.

However, more flexible communication semantics are required for today’s component- and plug-and-

play systems. In those situations, our DCG approach is a vital feature in order not to sacrifice

performance in account of the needed flexibility.

5.1.3 Dealing with Formats

PBIO’s implementation of NDR separates the detailed format descriptions from the actual messages

exchanged. Format descriptions are registered with a format service and messages are prefixed with

a small format token that identifies them. Record format descriptions in PBIO include the names,

types, sizes and positions of the fields in the messages exchanged. Figure 21 shows a C language

declaration that builds a format description for use in PBIO. Because the size and byte offset of

each field may change depending upon the machine architecture and compiler in use, those values

are captured using the C sizeof() built-in and the PBIO IOOffset() macro.

The format description in Figure 21 may look somewhat obscure, but it could easily be generated

from the C typedef. In fact, both the typedef and the PBIO field list declaration can be generated

from a higher level specification, such as a CORBA IDL struct declaration or even an XML schema

(see Figure 22).

Different forms of specification are appropriate for different applications. The form of Figure 21 is

easiest for integrating PBIO-based messaging into an existing C application, but forms such as those

in Figure 22 may be more convenient for new applications. Regardless of the form of the specification,

the capabilities of PBIO are defined by the types of messages that can be represented and marshalled.
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interface small {
struct small record {

long ivalue;

double dvalue;

long< 5 > iarray;

};
}

(a) CORBA IDL specifi-
cation

<schema>
<element name="ivalue" type="integer"/>
<element name="dvalue" type="double"/>
<element name="iarray" type="integer"

minOccurs=5 maxOccurs=5/>
</schema>

(b) XML Schema specification

Figure 22: Alternative message structure definitions.

PBIO types are C-style structures whose fields may be atomic data types, substructures of those

types, null-terminated strings, and statically- or dynamically-sized arrays of these elements. In the

case of dynamically-sized arrays, the array is represented by a pointer to a variable-sized memory

block whose length is given by an integer-typed element in the record.1

Dynamic Formats. Because PBIO formats roughly correspond to a description of a C-style

structures, the formats used by individual applications tend to be relatively static (as are those

structures), and the field lists of locally-used records are known at compile time. However unlike

many marshalling and communication mechanisms, PBIO does not depend in any way upon compile-

time stub generation or any other compile-time techniques for its efficiency or normal operation.

Field lists of the form of Figure 21 supplied at run-time are all that PBIO requires to build formats

for marshalling and unmarshalling. These highly dynamic capabilities of PBIO are useful in creating

plug-and-play components that operate upon data that may not be specified until run-time. These

more highly dynamic features of PBIO are also exploited by an XML interface that ‘dehydrates’

XML into a PBIO message for transmission and ‘re-hydrates’ it at the receiver based on a run-time

specified schema described in detailed in [144].

Format Description Representation and Size. One factor affecting the cost of dealing with

formats is the actual size of the format information to be exchanged. Unlike the records they describe,

PBIO format information is represented on the wire by a well-defined structure that includes some

general format information of fixed size (≈ 16 bytes), the format name, and information for each

of the fields in the format’s field list. The information for each field consists of a fixed size portion

(currently 12 bytes) and a variable size portion (the field name and base type). A general expression

for the approximate wire size of format information is:

size ≈ 16 + strlen(formatname) +
∑

fεFields

(12 + strlen(fname) + strlen(ftype))

The first two bytes of the format information give its overall length and are always in network

byte order. One of the next bytes specifies the byte order of the remaining information in the format.
1PBIO does not attempt to represent recursively defined pointer-based data structures such as trees or linked lists.
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Figure 23: Single PBIO connection showing per-connection format servers (FS) and caches (FC).

PBIO format operations that involve the transfer of format descriptions always use this wire format

for their exchanges. It is important to note that such operations are associated only with one-

time events, such as a new format description registration or the first occurrence of a message of a

particular format.

Format Servers and Format Caches. The format service in PBIO is provided by format servers

which issue format tokens when formats are registered with them. For identical formats (same

fields, field layout, format name, and machine representation characteristics), a format server issues

identical format tokens. Format tokens can be presented to format servers in order to retrieve

complete format information. Format caches are repositories of format information, indexed by

format tokens, and exist on both the encoding and decoding clients to optimize communication with

format servers.

The details of format communication in PBIO depend to some extent upon the circumstances of

its use. Two principal modes are:

• Connected PBIO: where PBIO performs marshalling/unmarshalling and directly controls

transmission on the network, and

• Non-connected PBIO: where PBIO performs marshalling/unmarshalling, but is not in di-

rect control of network transmission.

The first case is the simplest one because PBIO can ensure that the format information for a given

record is sent across the wire before the first record of that format. In this case, format information

is issued (by the sender) and cached (by the receiver) on a per-connection basis. Because formats are

always interpreted in the context of a particular connection, format tokens in this mode are simple

32-bit integers where the token with value i is the i th format transmitted on that connection. Since

the sender always transmits format information first, essentially pre-loading the receiver’s format

cache, there are no requests for it. This situation is depicted in Figure 23.

The case of non-connected PBIO is more interesting. Here a message (along with its format

token) is sent by non-PBIO means to a third party. Because PBIO does not control transmission,

it cannot pre-load the format cache of the receiver as in the former case. Instead, the third-party

receiver must be able to use the format token to retrieve the full format information. This is

essentially a naming problem, and there are a number of possible implementation options. In the
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Figure 24: Simple format service arrangement in non-connected PBIO. A single PBIO format server
is shared by all communicating applications. Each application has its own format cache (FC) to
minimize communication with the server.
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Figure 25: The “self-service” format arrangement in non-connected PBIO. Each application acts as
a format server (FS) for its own formats and maintains a cache (FC) for formats registered elsewhere.

simplest one, depicted in Figure 24, a format server, located at a well-known address, serves all

communicating parties.

Any format token can be presented to the server to retrieve full format information. At the other

end of the spectrum, each communicating client can act as the format server for its own formats, as

shown in Figure 25.

The self-server arrangement is similar to the connected PBIO arrangement of Figure 23, except

that there is one server and one cache per process instead of one per connection. Because the

communication mechanism is unknown to PBIO and because format tokens are only meaningful

when presented to the issuing server, the format token must contain enough information for the

client to identify the correct server. Communication with the issuing format server is generally

not via the channels that propagate the message, though PBIO can be made to use one-to-one

third-party communication links for format communication through special callbacks.

These two schemes, and variants between the extremes, have different performance characteris-

tics with respect to communication startup costs. For example, the single format server approach

maximizes the benefits of caching because identical formats always have identical format tokens, to

the benefit of long-running clients. However, format registration for a new client always requires

a communication with the central format server. In the scheme where each client is its own for-

mat server, format registration requires no network communication and is therefore quite cheap.

However, caches will be less well utilized because two clients of the same machine architecture and

transmitting the same records will have non-identical format tokens.
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5.2 Publish/Subscribe Systems

Recently there has been considerable interest in event-based or implicit invocation as an alternative

integration techniques for system software [103, 54, 38, 142]. This architectural style of integration

is naturally supported by publish/subscribe systems. Publish/subscribe systems have become an

important component of many distributed applications and services as they are also well-suited to

the reactive nature of applications such as collaborative environment, mobile [140] and pervasive

computing [60].

Under the publish-subscribe paradigm a number of system components transmit and/or receive

pieces of information, called messages, in response to events occurrences. Receivers can subscribe to

messages published by producers upon the occurrence of some event. A given component can, at any

time, act as both a publisher and a subscriber. Events can be occurrences such as the modification

of a component state, a change in the availability of resource, or just the sending of an application

message.

ECho is a high-performance publish/subscribe communication infrastructure developed at Geor-

gia Tech [37]. Several attributes distinguish ECho from previous work and make it a good fit for

the roles of data and control transport, and as the basis for the style of component integration

used in Active Streams. First, ECho transports distributed data with performance similar to that

achieved by communication systems typically used for high-performance applications (like MPI [45]).

This level of performance is required if the communication mechanism is to support the normally

large data flows that are part of applications such as distributed collaboration. Second, ECho ef-

ficiently supports communication across heterogeneous machines, a capability partly derived from

its ability to recognize and provide runtime translation for user-defined message formats. Finally,

it provides for efficient dynamic type extension and reflection essential to support system evolution.

The following subsections describe ECho, its functionality and some details on its implementation.

5.2.1 ECho Model and Functionality

At a high-level, ECho implements a model similar to that proposed by the CORBA Event Ser-

vices specifications [58] and shares many ideas with other related research efforts such as IBM’s

Gryphon [125], Siena [20] and Elvin [119].

ECho supports the publish/subscribe paradigm using a simple subscription mechanism com-

monly known as channel. Channels serve as the rendezvous point for publishers and subscribers.

Components notify the occurrences of events by posting notifications to one or more channels. Ev-

ery notification posted is delivered by the underlying mechanism to all the interested parties that

have subscribed to the channel. Channels are essentially entities through which the extent of event

notification propagation is controlled. iBus [85] and CORBA Event Service [58] adopt a similar

model.

ECho’s principal contribution to specializing data flows is the concept and realization of derived

event channels. Receivers in publish/subscribe systems have normally a way of specifying the mes-

sages they are interested on. In the context of ECho’s model, one way to approach this problem

would be to create a new event channel and interpose an event filter as shown in Figure 27.
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Figure 26: Using Event Channels for Communication.
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Figure 27: Source and sink with interposed event filter.
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The event filter could be located on the same node as the event source and be perceived as

a normal event sink by the original event channel and a normal source by the new, or filtered,

event channel. Although this solution would not disturb the normal function of the original event

channel, it fails if there were more than one event source associated with the original event channel

as there would still be raw, unfiltered events traveling over the network from Process A to Process

B (Figure 28-(a)).

The normal semantics of event delivery schemes do not offer an appropriate solution to the event

filtering problem.

Since the normal semantics of event delivery schemes do not offer an appropriate solution, ECho

extends it with the concept of a derived event channel. Rather than explicitly creating new event

channels with intervening filter objects, subscribers that wish to receive filtered event data can

create a new channel whose contents are derived from the contents of an existing channel through an

subscriber-supplied derivation function. The event channel implementation will move the derivation

function to all event sources in the original channel, execute it locally whenever events are submitted,

and transmit any resulting event via the derived channel. This approach has the advantage of

eliminating unwanted event traffic and the associated waste of computational and network resources.

In fact, if the derived event channel has sinks that are local to any of the sources in the original

traffic, network traffic between those elements is avoided entirely. Figure 28-(b) shows the logical

configuration of a derived event channel.

While the concept of derived event channels bears some similarity to prior work on content-

based filtering (as in Siena [19] and Elvin [119]) and pattern-based filter/transformation (as in

Gryphon [125]), ECho allows more general computations over event data and accomplishes those

computations efficiently. This efficiency is based on semantics that don’t require centralized event

distribution and the use of dynamic code generation to create native filter/transformation functions.

Our work is complementary with that of the Gryphon project as we are not looking at the optimal

mapping of an information flow graph onto a network of brokers but rather concern ourself with
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the most efficient execution of such computations. The Java-based approach of DACE [42] offers

broad generality in content-based subscriptions, but lacks the transformation capacity of derived

event channels and offers significantly lower throughput and high latency than ECho.

5.2.2 Efficient Notification Propagation

ECho event channels, unlike many CORBA event implementations and other event services such

as Elvin [119], are not centralized in any way. ECho channels are light-weight virtual entities.

Figure 26-(a) depicts a set of processes communicating using event channels. The event channels are

shown as existing in the space between processes, but in practice they are distributed entities, with

bookkeeping data residing in each process where they are referenced as depicted in Figure 26-(b).

Channels are created once by some process, and opened anywhere else they are used. The process

which creates the event channel is distinguished, in that it is the contact point for other processes

wishing to use the channel. The channel ID, which must be used to open the channel, contains the

contact information for the creating process (as well as information identifying the specific channel).

However, event notification distribution is not centralized and there are no distinguished processes

during notification propagation. Event messages are always sent directly from an event source to all

sinks and network traffic for individual channels is multiplexed over shared communications links.

ECho is implemented on top of the Communication Manager (CM) and PBIO, packages devel-

oped at Georgia Tech to simplify connection management and heterogeneous binary data transfer.

As such, it inherits from these packages portability to different network transport layers and threads

packages. CM and PBIO operate across the various versions of Unix and Windows NT, have been

used over the TCP/IP, UDP, and ATM communication protocols and across both standard and

specialized network links like ScramNet [27].

In addition to offering interprocess event message delivery, ECho also provides mechanisms for

associating threads with event handlers allowing a form of intra-process communication. Local and

remote sinks may both appear on a channel, allowing inter- and intra-process communication to

be freely mixed in a manner that is transparent to the event sender. When sources and sinks are

within the same address space, an event message is delivered by directly placing the message into

the appropriate shared-memory dispatch queue. While this intra-process delivery can be valuable,

this paper concentrates on the aspects of ECho relating to remote delivery of event messages.

5.2.3 Event Notification Types and Typed Channels

One of the differentiating characteristics of ECho is its support for efficient transmission and handling

of fully typed events. Some event delivery systems leave event data marshalling to the application.

ECho allows types to be associated with event channels, sinks and sources and will automatically

handle heterogeneous data transfer issues. Building this functionality into ECho using PBIO allows

for efficient layering that nearly eliminates data copies during marshalling and unmarshalling. As

others have noted [81], careful layering to minimize data copies is critical to delivering full network

bandwidth to higher levels of software abstraction. The layering with PBIO is a key feature of ECho

that makes it suitable for applications that demand high performance for large amounts of data.
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Base Type Handling and Optimization. Functionally, ECho event types are most similar to

user defined types in MPI. The main differences are in expressive power and implementation. Like

MPI’s user defined types, ECho event types describe C-style structures made up of atomic data

types. Both systems support nested structures and statically-sized arrays. ECho’s type systems

extends this to support null-terminated strings and dynamically sized arrays.2

While fully declaring message types to the underlying communication system gives the system

the opportunity to optimize their transport, MPI implementations typically do not exploit this op-

portunity and often transport user defined types even more slowly than messages directly marshalled

by the application. In contrast, ECho achieve a significant performance advantage by adopting NDR

for wire format (Section 5.1).

Type Extension. ECho supports the robust evolution of sets of programs communicating with

events, by allowing variation in the data types associated with a single channel. In particular, an

event source may submit an event whose type is a superset of the event type associated with its

channel. Conversely, an event sink may have a type that is a subset of the event type associated

with its channel. Essentially this allows a new field to be added to an event at the source without

invalidating existing event receivers. This functionality is extremely valuable for system evolution

since it may avoid the need for simultaneous upgrades upon minor changes on types. ECho even

allows type variation in intra-process communication, imposing no conversions when source and sink

use identical types but performing the necessary transformations when source and sink types differ

in content or layout.

The type variation allowed in ECho differs from that supported by message passing systems and

intra-address space event systems. For example, the Spin event system [103] supports only statically

typed events. Similarly, MPI’s user defined type interfaces do not offer any mechanisms through

which a program can interpret a message without a priori knowledge of its contents. Additionally,

MPI performs strict type matching on message sends and receives, specifically prohibiting the type

variation that ECho allows.

In terms of the flexibility offered to applications, ECho’s features most closely resemble those of

systems that support the marshalling of objects as messages. In these systems, subclassing and type

extension provide support for robust system evolution that is substantively similar to that provided

by ECho’s type variation. However, object-based marshalling often suffers from prohibitively poor

performance. ECho’s strength is that it maintains the application integration advantages of object-

based systems while significantly outperforming them.

5.3 Streamlets

A critical issue in the implementation of streamlets and filters for ECho’s derived event channels

is the nature of the function and its specification. Since the function is specified by the client but

must be evaluated at the (possibly remote) source, a simple function pointer is obviously insufficient.

There are several possible approaches to this problem, including:
2In the case of dynamically sized arrays, the array size is given by an integer-typed field in the record.
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• severely restricting the function specification language, perhaps to a set of relational, equality

and logical operators;

• using a generic, language such as C, but relying on pre-generated shared object files; or

• using interpreted code, like Tcl/Tk [101] or Java [77].

Having a relatively restricted filter language is the approach chosen in the CORBA Notification

Services [59] and in Siena [19]. While this facilitates efficient interpretation, the restricted language

may not be able to express the full range of conditions useful to an application, thus limiting its

applicability.

Once agreed that a more general programming language is a better alternative, a remainig

question is its translation in heterogeneous environments. One might consider supplying these

functions in the form of a shared object file that could be dynamically linked into the process of the

ASNs or an event source. Using shared objects allows these functions to be more general, but requires

the client to supply them in a native object file for each possible destination. This is relatively easy

in a homogeneous system, but becomes increasingly difficult as heterogeneity is introduced.

In order to avoid problems with heterogeneity one might supply such functions in an interpreted

language such as a Tcl or Java. This would allow general functions and alleviate the difficulties with

heterogeneity, but it would impact efficiency. Because of our focus on high performance computing

and since most streamlets and filter we have found are quite simple, we have chosen a different

approach that maintains high efficiency at some price in flexibility. We express functions in ECL,

a subset of C, and resort to dynamic code generation to create efficient native versions of such

functions on the target host. ECL may be extended as future needs warrant, but currently it is

a subset of C, supporting the C operators, for loops, if statements and return statements. For

experimentation, however, and in order to consider potential useful extensions to ECL, we have also

enabled the use of general C-based shared-object modules.

ECL’s dynamic code generation capabilities are based on Icode, an internal interface developed

at MIT as part of the ’C project [108]. Icode is itself based on Vcode [40], also developed at MIT by

Dawson Engler. Vcode supports dynamic code generation for MIPS, Alpha and Sparc processors.

We have extended it to support MIPS n32 and 64-bit ABIs, Sparc 64-bit ABI, and x86 processors3.

Vcode offers a virtual RISC instruction set for dynamic code generation. The Icode layer adds

register allocation and assignment. ECL consists primarily of a lexer, parser, semanticizer and code

generator.

Figure 29 shows a streamlet example extracted from our atmospheric model application. The

streamlet computes (and passes) the average velocity of wind in a given area.

5.3.1 Streamlet Parameterization and Static Variables

Streamlets and filters for ECho’s derived channel expressed in ECL have the ability to label variables

as “static”, so that their values persist across multiple invocations of the function. This allows the
3Integer x86 support was developed at MIT. We extended Vcode to support the x86 floating point instruction set

(only when used with Icode).
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{

int i, j;

double sum = 0.0;

for (i = 0; i < 37; i = i + 1) {

for (j = 0; j < 253; j = j + 1) {

sum = sum + input.wind_velocity[j][i];

}

}

output.average_velocity = sum / (37 * 253);

}

Figure 29: A streamlet that computes (and passes) the average of an input array.

implementation of functionality that depends on some amount of persistent state, such as a moving

average computation.

Another useful feature is the ability to parameterize a derivation function. Parameterization

allows a parameter block to be associated with a function. This block is read-only to the function,

but can be updated remotely in a push-type operation. This is useful for fine-grain adaptations such

as “tuning” the range of a functions that filters out records outside a given range (Figure 30).

5.4 Active Streams Node

Computational units make themselves available by running as Active Streams Nodes (ASNs), where

each ASN provides a well-defined environment for streamlet execution. ASNs decouple the application-

and streamlet-specific functionality from the general administrative tasks needed to support stream-

let execution, such as scheduling, monitoring and reconfiguration. An ASN also provides the basic

resources needed by streamlets and enforces constraints on how those resources can be used and

includes an interface that allows the control of its execution.The existing implementation of ASN is

built on top of ECho and is designed to be portable and efficient, and eventually safe and secure.

ASNs register themselves with a set of other ASNs, with ASNs in a give set comprising an overlay

network structured as a fully-connected graph. When an ASN is started at a particular host, it is

given the names of the overlay network(s) it is supposed to join (as well as other configuration

parameters such as maximum memory available and directory service contact point).

An ASN could be assigned to serve a particular application or a set of them. By adopting the

first approach, the costs of inter-streamlet and streamlet-ASN communication could be minimized

(directly placing a message into a memory location shared by colocated sources and sinks), in

{

if ((input.trade_price < param.range_low_bound) ||

(input.trade_price > param.range_high_bound)) {

return 1; /* submit event into derived channel */

}

return 0; /* do not submit event into derived channel */

}

Figure 30: A filter function with range specified as a parameter.
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Figure 31: Streamlet repository service.

addition many protection issues could be avoided in this manner. On the other hand, assigning an

ASN to a set of applications would allow us to do cross-application adaptations. Since the trade-offs

presented by both options make the selection of the “right” approach not obvious, we have opted

for a flexible solution that will allows to further investigate this topic.

ASNs provide the thread on which streamlets execute. Streamlets are registered through the

runtime system with an associated set of conditions for their activation. Such conditions are stated

as the minimum set of data units (threshold) that must be available per incoming stream before

execution. A streamlet is eligible for execution whenever all of its input streams are over threshold.

Once triggered, a streamlet executes to completion. In addition, ASNs provide the queues associated

with a streamlet’s incoming and outgoing streams. These queues decouple the streamlets execution

by introducing explicit control boundaries and provide rate-matching between them.

5.5 Streamlet Repository Service

The Streamlet Repository Service (see Figure 31) is composed of a number of repository servers, and

a client library that can be linked to any application, making it thus capable of fetching components

from these servers. The client-side library requires about 20 KBytes of memory, which makes it

sufficiently small to be used in end-devices with limited resources such as PDAs.

The SRS client API supports the insertion, search, retrieval and removal of streamlets from a

given repository based on the streamlet characteristics and/or ID.

Each SRS client maintains a streamlet cache, keyed by streamlet ID, that contains all information

on the streamlet as well as the streamlet’s code. The SRS cache API allows the creation and

destruction of caches, as well as the insertion, lookup and removal of streamlets from a given cache,
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based on the streamlet ID.

There are at least a couple of ways by which a client application can find a streamlet repository

server. The client could be configured with a list of unicast repository server addresses or it could

come with an anycast address [105]. This anycast address or the list of unicast addresses can be

requested through a directory service like PDS.

5.5.1 Streamlets Descriptions

Streamlets are described by a set of properties (see Table 6 for a detailed description of each) that

includes most of those advocated by the Open Software Description Format (OSD), an application of

XML to support automated software distribution environments proposed by Marimba Incorporated

and Microsoft Corporation [66]. We have included an attribute-value list to cope with less common

or unforeseen attributes.

Table 6: Streamlet description fields in the repository
Field Type Example Note
Name string CropImage-1 Name and version
UID string MD5 string Cryptographic hash
OSRelease enum SunOS-5.7 uname -rs
Processor enum SPARC uname -p
Content enum CSObj Lang. and format
Author string mafalda@quino.net Author’s email
Description string Reduce image Descriptive comment
Attribute list a-v list << a1 = v1 >< a2 = v2 >> List of attr-value pairs

5.5.2 Safety Considerations

SRS clients fetch streamlets for executing them in their hosts. Without the proper precautions, a

node may import and run unsafe code, thereby opening the host to abuse through misuse of its

resources.

We address security in SRS through policy and cryptology. Authors and streamlets have unique

IDs. We use authors’ email addresses as their IDs 4. Each streamlet has a unique identifier consisting

of a cryptographic hash of the streamlet code. Our current implementation uses MD5 [115] to this

end. This scheme eliminates the need for a centralized streamlet naming system; guarantees that

the streamlets attached to streams are those specified by the user, assuming that the configuration

command has not been modified on the wire and that the ASN has not been compromised; and elim-

inates code versioning problems. In addition, each configuration command carries a pre-computed

hash key that can be used to rapidly look up the streamlets’ code in a cash. Since each ASN can

reliably check the source of a streamlet and the identity of its developer, it’s able to decide, based

on that information, whether or not it should accept and execute the streamlet’s code.
4Although in our currently implementation authors’ identities are not certified, we have taken measures to add

public-key certificates following a protocol similar to X.509 [21]
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Figure 32: Structure of an ARMS Node.

5.6 Active Resource Monitoring Service

Through ARMS an application inherits a significant amount of the mechanisms needed for providing

introspection [123], allowing the application designer to focus on the application-specific logic of

monitoring and adaptation. An overview of the ARMS architecture is presented in Chapter 4,

Figures 16 and 15.

Hosts of interest to applications must become ARMS nodes. Different objects (including devices)

at ARMS nodes are the sources of monitoring data. ARMS nodes connect to other nodes in specific

sets or ARMS networks. ARMS clients connect to an ARMS network through an ARMS node that

could reside on its own or another host. ARMS clients express their interests in different monitored

objects by requesting state reports on such objects or selectively registering themselves with the

streams associated with those same objects. Application request for continuous reports follow a

lease model. Requests are to last for a user-specified (but limited) time span after which they will be

canceled. Previously issued requests can be re-issued, before lease expiration, by using the request

number. Correspondingly, a non-expired request can be canceled using this same number.

An ARMS node obtains monitoring information from sensors. In the case of resources, sensors

report the observed performance that the resource is able to deliver at the time of measurement.

Measurements are taken at the application level, since the intention is to forecast actual application

performance, and this is done using standard operating systems calls (such as vmstat and uptime)

to facilitate portability. ARMS uses a combination of passive and active sensors as needed [148].

Passive sensors exercise an external system utility, such as uptime, and scan the utility’s output to

obtain the required information. Active sensors, on the other hand, must conduct a performance

experiment, such as timing a message exchange between two hosts, to measure the availability of

the monitored resources.
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Different passive and active sensors collect information on node and path characteristics such

as available memory and CPU in a node, or perceived latency in a path. Table 7 describes the

information currently collected by ARMS nodes. The reporters provides the collected information

to subscribed or requesting clients.

Status reports of network paths between two ARMS nodes include latency and bandwidth.

Latency is measured sending an arbitrarily small message between two nodes and using one-half of

the round-trip time as an approximation. Bandwidth, or better, effective bandwidth is obtained

by sending an arbitrarily big sized message (and waiting for the reply) and applying the following

formula:

Effective−Bandwidth =
D

Ttransfer −RTT

where D is the data size transfer, Ttransfer is the data transfer time and RTT is the predicted

round trip time.

For CPU availability ARMS uses the same passive approach as NWS [148]; the percentage of

CPU availability is computed as:

Available CPU = Tidle + Tuser/RP + (Tuser ∗ Tsystem/RP )

where Tidle is the percentage of time the CPU is idle, Tuser is the percentage of time CPU is

executing user code, Tsystem is the percentage of time the CPU is executing system code, and RP is

the number of runnable processes. The resulting value can be used to compute the CPU slowdown a

process will experience due to contention. The rationale for this formula is that a new job (running

with standard priority) should be entitled to all the idle time, and a fair share of the available user

time.

ARMS sensors maintain histories of measurements. In order to forecast performance availability,

ARMS includes a library with a number of predictive algorithms including mean-based methods

such as running, trimmed, and sliding window averages as well as minimum, maximum, median and

support to build autoregressive models.

Table 7: ARMS node and path status report information
Resource Description
hostname Host name
ipAddress IPv4/IPv6 address
numProc Number of processors
configGuess Configuration triplets from GNU autotools
freeMem History of available memory
cpuAvailable History of CPU availability
machineUp How long the system has been running
numUsers Number of users currently logged on
diskFree History of disk free space (in KB)
latency Path latency history between two nodes
bandwidth Path bandwidth history between two nodes
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<<device = camera>

<<type = USB>

<name = /dev/video0>

<image

<max-resolution = 640x480>

<min-resolution = 160-120>

<format = RGB>>

<fps = 20>>>

Figure 33: Attribute-value representation of a camera.

Clients can select a subset of the available data and integrate it to produce application-specific

monitoring metrics and decide on possible adaptations. Clients can easily redefine their monitoring

views by adapting/replacing the filters used for monitoring while the system is running, as their

workload and environment change. In this manner, applications have an additional level of adapta-

tion that would not be possible were the monitoring and adaptation mechanisms coded statically for

each of them. In addition, most of these filters can be instantiated directly in the source of monitoring

data streams with the corresponding savings in bandwidth, and in sink and source processing.

5.7 Proactive Directory Service

The Proactive Directory Service (PDS) is an efficient and scalable information repository with an

interface that includes a proactive push-based access mode. Through this interface, PDS clients

can learn of objects (or types of objects) being inserted/removed from particular contexts (such as

addition or removal of services or devices) and/or about changes to pre-existent objects. PDS is

implemented in C/C++ making use of ECho and PBIO.

In PDS, related information is organized into well-defined collections called entities. Each entity

represents an instance of an actual type of object in the environment and has an associated set of

properties, or attributes, with particular values. An attribute can be seen as a category in which the

entity can be classified and a value, as the entity’s classification in that category. Attribute-value

pairs can be organized in a hierarchical manner indicating some kind of dependency. As an example

consider a USB camera with devices name /dev/video0, that generates RGB images at 20 fps with a

maximum resolution of 640x480 and a minimum of 160x120, this can be represented as in Figure 33.

Entities may be bound to names in different contexts and each context contains a list of name-

to-entity bindings. Contexts themselves may be bound to names in other contexts, building an

arbitrary directed naming graph. Since a single secular namespace does not scale well, PDS divides

the global name space into subspaces and assigns them to domains. Each domain implements its

own namespace roughly as a tree, a single root context and a context for each vertex.

Each element in PDS, be it a domain, a context, or an entity, has associated with it an ECho event

channel. The PDS interface allows clients to subscribe to the event channel for a particular object.

With registration PDS clients provide a function that serves as an event handler and is invoked

by the communications system when new events arrive. Each of the state-changing operations
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implemented by PDS submits an event to the notification channel associated with the appropriate

object. When the owner of an object changes the value of some of the object’s attributes (such as

when ‘Woodstock’ is added to the ‘Peanuts’ cluster or ‘Rerun’ gets more memory), a change event

is submitted to the channel belonging to the entity representing it.

PDS clients are able to customize notification channels by supplying filter functions, written

in ECL, which are then dynamically compiled and installed at the server. To this end, it makes

use of ECho’s derived event channels capability. Inside a filter function, it is possible to examine

the notification data to determine whether or not the notification should be sent. For example, a

notification corresponding to an update in CPU utilization in a given host may only be useful to

an application if the new value is outside a certain range. Notice that this customization is on a

per-client basis; the actions and interests of one client do not affect updates received by another.



Chapter 6: Evaluation

This chapter presents evaluation results that quantify the costs and benefits of the Active Streams

approach as reflected by the current implementation of its associated framework. We progress in

a bottom-up fashion, starting with an analysis of the performance and flexibility of the Portable

Binary I/O library (PBIO), our implementation of the Native Data Representation wire-format.

We proceed, in Section 6.2, to show the results from a detailed performance evaluation of ECho.

Given that ECho is the publish/subscribe communication infrastructure used by Active Streams

for data and control transport, and as the basis for component integration, these results are a

determining factor in the cost/benefit analysis of the overall approach.

In Section 6.3 we present experimental results that demonstrate the costs and benefits of Ac-

tive Streams for end-user applications. We discuss results illustrating the basic overhead of our

approach, the benefits of stream specialization, and the need for multiple points of adaptation over

the datapath.

One of the innovative components of the Active Streams Framework is our Proactive Directory

Service. This chapter also includes evaluation results that demonstrate the costs and benefits of this

new proactive approach.

We close the chapter with a summary of our evaluation results.

6.1 PBIO Implementation of NDR

This section compares the performance and flexibility of PBIO with that of systems like MPI,

CORBA, and XML-based ones. None of systems compared share PBIO’s stated goals of supporting

both flexible and efficient communication. MPI is chosen to represent traditional HPC communica-

tion middleware that depends upon a priori knowledge and sacrifices flexibility for efficiency. XML-

based mechanisms are examined because they emphasize plug-and-play flexibility in communication

without considering performance. CORBA is chosen as a relatively efficient representative of the

object-based approach that is becoming popular in distributed high-performance computing. Some

object-based notions of communication, such as exchanging marshalled objects, can potentially offer

communication flexibility that is as good or better than PBIO’s. However, current implementations

of object marshalling are too inefficient for serious consideration in high performance communica-

tion. Because of this, our measurements of CORBA in this context are only for one-way invocations

where the data is carried as a single CORBA struct parameter. In this style of communication,

CORBA offers little flexibility (no reflection or subclassing are possible).
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Figure 34: Cost breakdown for message exchange.

6.1.1 Analysis of Costs in Heterogeneous Data Exchange

Before analyzing the various packages in detail, it is useful to examine the costs in an exchange of

binary data in a heterogeneous environment. As a baseline for this discussion, we use the MPICH [79]

implementation of MPI. Figure 34 represents a breakdown of the costs of an MPI message round-trip

between a x86-based PC and a Sun Sparc connected by 100 Mbps Ethernet.1

The time components labeled “Encode” represent the time span between the point at which

the application invokes MPI send() and its eventual call to write data on a socket. The “Decode”

component is the time span between the recv() call returning and the point at which the data is

in a form usable by the application. This delineation allows us to focus on the encode/decode costs

involved in binary data exchange. That these costs are significant is clear from the figure, where

they typically represent 66% of the total cost of the exchange.

Figure 34 shows the cost breakdown for messages of a selection of sizes (using examples drawn

from a mechanical engineering application), but in practice, message times depend upon many

variables. Some of these variables, such as basic operating system characteristics that affect raw

end-to-end TCP/IP performance, are beyond the control of the application or the communication

middleware. Different encoding strategies in use by the communication middleware may change the

number of raw bytes transmitted over the network; much of the time those differences are negligible,

but where they are not, they can have a significant impact upon the relative costs of a message

exchange.

The next subsections will examine the relative costs of PBIO, MPI, CORBA, and an XML-based

system in exchanging the same sets of messages. We first compare the sending- and receiving-side

communication costs for all of the alternatives evaluated. Then we discuss our use of dynamic-code-

generation to reduce unmarshalling costs and evaluate the resulting performance improvements. We
1The Sun machine is an Ultra 30 with a 247 MHz cpu running Solaris 7. The x86 machine is a 450 MHz Pentium

II, also running Solaris 7.
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Figure 35: Sending-Side encoding times.

conclude the section with an analysis of the performance effects of flexibility in PBIO.

6.1.2 Sending-Side Costs

We start by comparing the sending-side data encoding times on the Sun Ultra-30 Sparc for an XML-

based implementation2, MPICH, CORBA, and PBIO. Figure 35 shows the different encoding times

in milliseconds. An examination of this plot yields two conclusions:

• XML wire formats are inappropriate. The figure shows dramatic differences in the

amount of encoding necessary for the transmission of data (which is assumed to exist in

binary format prior to transmission). The XML costs represent the processing necessary to

convert the data from binary to string form and to copy the element begin/end blocks into

the output string. The result is an encoding time that is at least an order of magnitude higher

than other systems. Just one end of the encoding time for XML is several times as expensive

as the entire MPI round-trip message exchange (as shown in Figure 34). Further, the message

represented in the ASCII-based XML format is significantly larger than in the binary-based

representations, translating into a significantly larger network transmission time, increased

latency and substantially decrease in possible message rates.

• The NDR-approach significantly improves sending-side costs. As is mentioned in

Section 5.1, we transmit data in the native format of the sender. As a result, no copies or

data conversions are necessary to prepare simple structure data for transmission. So, while

MPICH’s costs to prepare for transmission on the Sparc vary from 34µsec for the 100 byte
2A variety of implementations of XML, including both XML generators and parsers, are available. We have used

the fastest known to us at this time, Expat [23].
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record up to 13 msec for the 100Kb record and CORBA costs are comparable, PBIO’s costs

are a flat 3 µsec.

6.1.3 Receiving-Side Costs

In analyzing the receiving-side cost of communication, we identify several components that contribute

to it, including: (1) byte-order conversion, (2) data movement costs, and (3) control costs.

Byte order conversion costs are to some extent unavoidable. If the communicating machines use

different byte orders, the translation must be performed somewhere, regardless of the capabilities of

the communications package.

Data movement costs are harder to quantify. If byte-swapping is necessary, data movement

can be performed as part of the process, without incurring significant additional costs. Otherwise,

clever design of the communication middleware can often avoid copying data. However, packages

that specify an intermediate wire format for transmitted data have a harder time being clever in

this area. One of the basic difficulties is that the native format for mixed-datatype structures on

most architectures has gaps, unused areas between fields, inserted by the compiler to satisfy data

alignment requirements. To avoid making assumptions about the alignment requirements of the

machines they run on, most packages use wire formats that are fully packed and have no gaps. This

mismatch forces a data copy operation in situations where a clever communications system might

otherwise have avoided it.

Control costs represent the overhead of iterating through the fields in the record and deciding

what to do next. Packages that require the application to marshall and unmarshall their own data

have the advantage that this process occurs in specially-written compiler-optimized code, minimizing

control costs. Systems such as CORBA, where the marshalling code can generally be pre-generated

and compiled based upon static stubs, have a similar advantage. However, to keep that code simple

and portable, such systems uniformly rely on communicating in a pre-defined wire format, therefore

incurring the data movement costs described in the previous paragraph.

Packages that marshall data themselves typically use an alternative approach to control, where

the marshalling process is controlled by what amounts to a table-driven interpreter. This interpreter

marshalls or unmarshalls application defined data, making data movement and conversion decisions

based upon a description of the structure provided by the application and its knowledge of the format

of the incoming record. This approach to data conversion gives the package significant flexibility in

reacting to changes in the incoming data and was our initial choice when implementing NDR.

XML necessarily takes a different approach to receiving-side decoding. Because the “wire format”

is an annotated continuous string, XML is parsed at the receiving end. The Expat XML parser [23]

calls handler routines for every data element in the XML stream. That handler can interpret the

element name, convert the data value from a string to the appropriate binary type and store it in

the appropriate place. This flexibility makes XML extremely robust to changes in the incoming

record. The parser we have employed is quite fast, but XML still pays a relatively heavy penalty

for requiring string-to-binary conversion on the receiving side.
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Figure 36: Receiving-Side decode times.

6.1.3.1 Comparing Receiving-Side Costs

Figure 36 shows a comparison of receiver-side processing costs on the Sparc for interpreted converters

used by XML, MPICH (via the MPI Unpack() call), CORBA, and PBIO. XML receiver conversions

are clearly expensive, typically between one and two orders of decimal magnitude more costly than

our NDR-based converter for this heterogeneous exchange. On an exchange between homogeneous

architectures, PBIO, CORBA and MPI would have substantially lower costs, while XML’s costs

would remain unchanged. Our NDR-based converter is highly optimized and performs considerably

better than MPI, in part because MPICH uses a separate buffer for the unpacked message rather

than reusing the receive buffer (as we do). However, NDR’s receiving-side conversion costs still

contribute roughly 20% of the cost of an end-to-end message exchange. While a portion of this

conversion overhead must be attributed to the raw number of operations involved in performing the

data conversion, we believe that a significant fraction of this overhead is due to what is, essentially,

an interpreter-based approach.

6.1.3.2 Optimizing Receiving-Side Costs in PBIO

Our decision to transmit data in the sender’s native format results in the wire format being unknown

to the receiver until run-time. PBIO’s implementation of NDR makes use of dynamic code generation

to create a customized conversion subroutine for every incoming record type. These routines are

generated by the receiver on the fly, as soon as the wire format is known. PBIO dynamic code

generation is performed using a package for dynamic code generation developed in Georgia Tech [39],

that provides a virtual RISC instruction set. Early versions of PBIO used the MIT Vcode system [41].

The instruction set provided by DRISC is relatively generic, and most instruction generation calls

produce only one or two native machine instructions. Native machine instructions are generated
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Figure 37: Receiving-Side costs for interpreted conversions in MPI and PBIO and DCG conversions
in PBIO.

directly into a memory buffer and can be executed without reference to an external compiler or

linker.

Employing DCG for conversions means that PBIO must bear the cost of generating the code

as well as executing it. Because the format information in PBIO is transmitted only once on

each connection and typically used to process multiple messages, conversion routine generation is

not normally a significant overhead. The proportional overhead encountered varies significantly

depending upon the internal structure of the record. To understand this variability, consider the

conversion of a record that contains large internal arrays. The conversion code for this case will

consists of a few for loops that process large amounts of data. In comparison, a record of similar

size consisting solely of independent fields of atomic data types requires custom code for each field.

The benefits derived from the use of DCG are apparent from the execution times for these dy-

namically generated conversion routines, which are shown in Figure 37 (we have chosen to leave

the XML conversion times off of this figure to keep the scale to a manageable size). From these

measurements, it is clear that the dynamically generated conversion routine operates significantly

faster than its interpreted version. This improvement removes conversion as a major cost in commu-

nication, bringing it down to near the level of a copy operation, and it is the key to PBIO’s ability

to efficiently perform many of its functions.

The cost savings achieved by PBIO and described in this section are directly reflected in the time

required for an end-to-end message exchange. Figure 38 shows a comparison of PBIO and MPICH

message exchange times for mixed-field structures of various sizes. The performance differences are

substantial, particularly for large message sizes where PBIO can accomplish a round-trip in 45%

of the time required by MPICH. The performance gains are due to: (1) virtually eliminating the

sending-side encoding cost by transmitting in the sender’s native format, and (2) using dynamic

code generation to customize a conversion routine on the receiving side.

Once again, Figure 38 does not include XML times to keep the figure to a reasonable scale.
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PBIO DCG 100Kb roundtrip   35.27msec

PBIO DCG 10Kb roundtrip    4.3msec

PBIO DCG 1Kb roundtrip   .87msec

PBIO DCG 100b roundtrip  .62msec

.002m                          .227m                                                                    .126m                .0002m                            .227m                                                   .046m

.002m                  1.94m                               .345m .001m               1.94m                         1.16m

.002m    15.39m                         3.32m .001m          15.39m                     1.16m

network decode network decode

13.31m                          15.39m                                     11.63m                           8.95m                    15.39m                                        15.41m

  sparc encode                           network                               i86 decode             i86 encode                    network                               sparc decode

.002m                            .345m                                                    .126m    .0005m                                  .345m                                    .05m

sparc encode          network                                      i86 decode            i86 encode                          network                                 sparc decode

.971m                    1.94m                                               1.19m                             .876m                                   1.94m                                             1.51m

sparc encode                  network                                       i86 decode i86 encode                       network                                        sparc decode

.086m                      .345m                                                 .106m       .046m                                    .345m                                                  .186m

.034m                    .227m                                                         .063m           .010m                            .227m                                                    .104m

sparc encode         network                                                    i86 decode    i86 encode               network                                                sparc decode

MPICH 1Kb roundtrip   1.11msec

MPICH 100 byte roundtrip   .66msec

MPICH 10Kb roundtrip   8.43msec

MPICH 100Kb roundtrip   80.0msec

Figure 38: Cost comparison for PBIO and MPICH message exchange.

Instead, Table 8 summarizes the relative costs of the round-trip exchange with XML, MPICH,

CORBA, and PBIO.

6.1.4 High Performance and Application Evolution

The principal difference between PBIO and most other messaging middleware is that PBIO messages

carry format meta-information, somewhat like an XML-style description of the message content.

This meta-information can be a useful tool in building and deploying enterprise-level distributed

systems and is key in enabling the Active Streams approach. This meta-information is what allows

generic components to operate upon data about which they have no a priori knowledge, and makes

possible the evolution and extension of the basic message formats used by an application without

requiring simultaneous upgrades to all application components. In other words, PBIO offers limited

support for reflection and type extension, features commonly associated with object systems.

PBIO supports reflection by allowing message formats to be inspected before the message is

received. Its support of type extension derives from doing field matching between incoming and

expected records by name. Because of this, new fields can be added to messages without disruption
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Original Round-trip time
Data Size XML MPICH CORBA NDR

100Kb 1200ms 80ms 67.47ms 35ms

10Kb 149ms 8.4ms 8.83ms 4.3ms

1Kb 24ms 1.1ms 1.01ms 0.87ms

100b 9ms .66ms 0.6ms 0.62ms

Table 8: Cost comparison for round-trip message exchange for XML, MPICH, CORBA, and NDR.
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Figure 39: Receiving-Side decoding costs with and without an unexpected field: Heterogeneous case.

since application components that don’t expect the new fields will simply ignore them.

Most systems that support reflection and type extension in messaging, such as those that use

XML as a wire format or marshall objects as messages, suffer prohibitively poor performance com-

pared to systems such as MPI which have no such support. Therefore, it is interesting to examine

the effect of exploiting these features upon PBIO performance. In particular, we evaluated the

performance effects of type extension by introducing an unexpected field into the incoming message

and measuring the change in receiving-side processing.
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Figure 40: Receiving-Side decoding costs with and without an unexpected field: Homogeneous case.
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Figures 39 and 40 present receiving-side processing costs for an exchange of data with an unex-

pected field. These figures show values measured on the Sparc side of heterogeneous and homoge-

neous exchanges, respectively, using PBIO’s dynamic code generation facilities to create conversion

routines. Figure 39 clearly indicates that the extra field has no effect upon the receiving-side per-

formance. Transmitting would have added slightly to the network transmission time, but otherwise

the support of type extension adds no cost to this exchange.

Figure 40 shows the effect of the presence of an unexpected field in the homogeneous case.

Here, the overhead is potentially significant because a homogeneous exchange would normally not

impose any conversion cost in PBIO. The presence of the unexpected field creates a layout mismatch

between the wire and native record formats that requires the relocation of fields by the conversion

routine. As the figure shows, the resulting overhead is no negligible, but it is never as high as in the

heterogeneous case. For smaller record sizes, most of the cost of receiving data is actually caused by

the overhead of the kernel select() call. The difference between the overheads for matching and

extra field cases is roughly comparable to the cost of memcpy() operation for the same amount of

data.

As noted earlier in Section 6.1.3, XML is extremely robust with respect to changes in the format

of the incoming record. It transparently handles precisely the same types of change in the incom-

ing record as PBIO. Thus, new fields can be added or existing fields reordered without worry that

the changes will invalidate existing receivers. Unlike PBIO, XML’s behavior does not change sub-

stantially when such mismatches are present. Instead, XML’s receiving-side decoding costs remain

essentially the same, as shown in Figure 36. However, these costs are several orders of magnitude

higher than those in PBIO.

It is worth noticing that the PBIO results shown in Figures 39 and 40 are actually based upon

a worst-case assumption, where an unexpected field appears before all expected ones in the record,

causing field offset mismatches in all expected fields. In general, the overhead imposed by a mismatch

varies proportionally with the extent of this. An evolving application might exploit this feature of

PBIO by adding additional fields at the end of existing record formats. This would minimize the

overhead caused to application components which have not been updated.

6.2 ECho

Active Streams relies on ECho, our publish/subscribe communication infrastructure, for data and

control transport and as the basis for its implicit invocation mode for component integration. ECho

is a core element of our Active Streams Framework as most of the framework’s components make

use of it. ASN communication and control, resource monitoring reports in ARMS, proactivity in

PDS, and code distribution in SRS are all built around ECho channels. This section summarizes

the results of our evaluation of ECho.

6.2.1 Comparing ECho Performance

Figures 41 and 42 represent the basic performance characteristics of a variety of communication

infrastructures that might be used for event-based communication in high performance applications.
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Figure 42: A comparison of delivered bandwidth in event infrastructures
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ECho CORBA MPICH XML
(ORBacus)

Total Round-Trip 30.6 53.0 80.1 1249
Sparc Encode 0.037 0.74 13.3 176
Network Transfer 13.9 13.9 13.9 182
x86 Decode 1.6 1.6 11.6 276
x86 Encode 0.015 0.64 8.9 124
Network Transfer 13.9 13.9 13.9 182
Sparc Decode 1.2 0.58 15.4 486

Table 9: Cost breakdown for heterogeneous 100Kb event exchange (times in msecs).

The values are of basic event latency and bandwidth in an environment consisting of a x86-based PC

and a Sun Sparc connected by 100 Mbps Ethernet.3 Note the use of a logarithmic vertical scale in

Figure 41. This is useful in presenting latencies for a range of message sizes on the same graph, but

it tends to minimize the substantial performance advantage that ECho demonstrates as compared

to the other infrastructures.

The infrastructures compared don’t all share the same characteristics and features, a fact that

accounts for some of their performance differences. ECho’s strength is that it provides the im-

portant features of these systems while maintaining the performance achieved by traditional high-

performance systems like MPICH.

In particular, ECho provides for event type discovery and dynamic type extension in a manner

similar to that of XML, or that which can be achieved by serializing objects as events (as in Java

RMI). CORBA is also gaining acceptance as distributed systems middleware and its Event Services

provide similar features.

6.2.2 Breakdown of Costs

Table 9 shows a breakdown of costs involved in the roundtrip event latency measures of Figure 41.

We present round-trip times because they naturally show all the combinations of send/recv on two

different architectures in a heterogeneous system. The time components labeled “Encode” represent

the span of time between an application submitting data for transmission and the point at which

the infrastructure invokes the underlying network send() operation. The “Network Transfer” times

are the one-way times to transmit the encoded data from sending to receiving machines. The

“Decode” times are the time between the end of the recv() operation and the point at which the

data is presented to the application in a usable form. This breakdown is useful for understanding

the different costs of the communication and in particular, how they might change with different

networks or processors.

We have excluded Java RMI from the breakdown in Table 9 because it performs its network

send() operations incrementally during the marshalling process. This allows Java to pipeline the

encode and network send operations making a simple cost breakdown impossible. However, as a

result of this design decision, Java RMI requires tens of thousands of kernel calls to send a 100Kb
3The Sun machine is an Ultra 30 with a 247 MHz cpu running Solaris 7. The x86 machine is a 450 MHz Pentium

II, also running Solaris 7.
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ORBacus ECho

Send Receive Send Receive
Data size side side side side

overhead overhead overhead overhead

100Kb 0.74 0.40 0.037 0.034

10Kb 0.22 0.046 0.037 0.034

1Kb 0.19 0.016 0.037 0.034

100b 0.17 0.010 0.037 0.034

Table 10: Cost breakdown for homogeneous event exchange (times in msecs).

message, seriously impacting performance.

Additionally, while the round-trip times listed in Table 9 are near the sum of the encode/xmit/decode

times, this is not true for the CORBA numbers. This is because implementations of the CORBA

typed event channel service typically rely on CORBA’s dynamic invocation interface to operate.

In the ORBs we have examined, DII does not function for intra-address-space invocations. The

result of this is that the CORBA typed event channel must reside in a different address space than

either the event source or event sink, adding an extra hop to every event delivery. This could be

considered an implementation artifact that might be handled differently in future CORBA event

implementations.

6.3 Effects of Stream Specialization

In this section we present experimental results that demonstrate the benefits of Active Streams for

end applications, in particular, the end effects of stream specialization through streamlets.

All experiments use a cluster of Sun Sparc Ultra 30’s (247 MHz CPU and 128 MB) running

Solaris 7 and connected by switched 100Mbps Ethernet. Sample data streams are derived from the

messaging requirements of an actual application similar to the one introduced in Section 3.1. The

message type of size 100KB is a non-homogeneous structure taken from a mechanical engineering

simulation of the effects of micro-structural properties on solid-body behavior. The smaller message

types (10KB, 1KB, and 100B) are representative subsets of the mixed-type message.

6.3.1 Basic Overheads

The effectiveness of our approach would depend on the cost/benefit tradeoffs of streamlet execution

and their effects on stream characteristics. Understanding the benefits of stream specialization is

straightforward if we abstract issues such as source, sink, and network contention. For instance, if

one half of the data streamed destined to a sink is unwanted, stream specialization would allow it

to receive twice the amount of useful information with the same bandwidth.

With gains in reduced network usage, however, come the additional costs of streamlet instantia-

tion and execution. Consider the streamlet presented in Figure 43 that filters out records outside a

given range. To instantiate this streamlet, our dynamic code generation facility requires 4 millisec-

onds on a Sun Sparc Ultra 30 and it executes in about 165 nanoseconds. Given our communication
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{

if ((input.range > LOWEND) || (input.range < HIGHEND)) {

return 1; /* submit record into output stream */

}

return 0; /* do not submit record */

}

Figure 43: A streamlet that passes only records with ‘range’ in a specified interval.

{

int i;

int j;

double sum = 0.0;

for (i = 0; i < MAXI; i = i + 1) {

for (j = 0; j < MAXJ; j = j + 1) {

sum = sum = input.array[i][j];

}

}

output.avg_array = sum / (MAXI * MAXJ);

return 1; /* submit record */

}

Figure 44: A streamlet that computes the average of an input array and passes it to its output.

infrastructure’s 7.5Mbps transfer rate for small (100 byte) messages that implies that the stream’s

source is spending about 107 microseconds to send each message. In other words, in this case, it

is ’cheaper’ to execute the filter than it is to send an unneeded message. Consequently, contrary

to intuition, the load at a stream source may be decreased, not increased, with the execution of a

streamlet that reduces the bandwidth requirement of a given stream. In comparison, the same filter

function implemented in Java (JDK 1.2.2), the most likely alternative representation for streamlets,

requires 1.8 microseconds for execution with Just-In-Time compilation enabled (or 3.7 microseconds

otherwise).

The second streamlet example (Figure 44), taken from a scientific visualization application,

computes the average of an input array; a typical task when downsampling a data stream for

visual rendering on variable-quality displays. This function is somewhat more complex than the

first example. It requires 5.5 msecs for code generation and 1.28 msecs to execute. Furthermore,

unlike the first example, this streamlet does not reject messages, but transforms them reducing

their sizes. As a result, resource savings are due to reductions in required network processing at

the server and in the reduction of required network bandwidth, important considerations for remote

data visualization [70]. Again for comparison, the same function implemented in Java requires

13.33 msecs for execution with Just-In-Time compilation enabled, (75.43 msecs otherwise). This

indicates that Java-based specialization may have such high run-times costs that server extension

would no longer be a win-win situation, i.e., the increase in server computation cost might not be

recouped in reduced network costs.

6.3.2 Overhead of Streamlet Execution

As evident from the previous section, the overhead introduced by our approach much depends on the

functionality of the streamlet(s) utilized. In order to measure basic overheads, we have implemented
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Figure 45: End-to-end latency for 20,000 messages with different degrees of specialization at the
source.

an identity streamlet that leaves the stream to which it is attached un-modified. Figures 45 and 47,

in their specialization scenario #2, show this overhead in terms of end-to-end latency and source

CPU utilization. From these figures, by comparing the scenario without stream specialization to

that one where specialization is done with the identity streamlet, it is clear that the basic streamlet

mechanism we have implemented does not add significant overheads to any pipeline-structured, data

streaming applications built with Active Streams.

6.3.3 Benefits of Stream Specialization

One of the intended uses of streamlet attachment is stream specialization. The primary benefit

of stream specialization is the possible reduction/elimination of wasteful message traffic (moving

streamlets ‘up’ the stream) and the subsequent savings in resource consumption. In order to gauge

the potential benefits of stream specialization, we have measured the effects of different types of

streamlets: a filter-type streamlet that discards a given portion of the stream content, and a trans-

formation streamlet that converts data units from its incoming stream into a different, smaller type

for its outgoing one (functionally similar to the examples in Figures 43 and 44 or a downsampling

filter for a Hydrology simulation reported in [90]).

We next apply these streamlets to our sample data streams and measure the effects on latency

and CPU utilization of moving streamlets ‘up’ the stream and toward the source. Figure 45 shows

the benefits in end-to-end latency as perceived by a client for different message sizes and degrees of

specialization at the source. Each sub-figure corresponds to a different message size: (a) 100K, (b)

10K, (c) 1K, and (d) 100B. The y-axis represents the different specialization scenarios: (1) without

specialization; (2) with an ‘Identity’ streamlet, which leaves the stream unchanged; and (3), (4),

and (5) with a streamlet that “filters out” 30, 60, and 90%, respectively, of the stream’s contents.
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Figure 46: Percentage of Source CPU utilization shared between User and System.

Compare the end-to-end latency of the first scenario (no specialization) to that of the third, fourth,

and fifth ones, where 90, 60 and 30% of the stream contents are “filtered out”, improving latency

by 3-6X.

Being able to place a specialization streamlet anywhere on the datapath, one would like to place

them right at the streams’ sources, the data servers, in order to harness all of the potential savings

in network bandwidth. Such savings, however, come with additional costs in the form of generation

and execution of streamlets incurred at the servers. Interestingly, and counter to common wisdom,

performance may be improved even when ‘giving servers extra work’ by moving streamlets onto them.

For a filter-type streamlet, for instance, this is easy to understand, as the additional code executed

by the server eliminates unnecessary protocol stack execution. Figure 46 clearly demonstrates this

effect. The figure shows the percentage of Source CPU utilization shared between User and System

for different specialization scenarios, when transmitting 20,000 10K-messages. As with Figure 45,

the y-axis represents the different specialization scenarios at the source: (1) without specialization;

(2) with an ’Identity’ streamlet; and (3), (4), and (5) with a streamlet that “filters out” 30, 60, and

90%, respectively, of the stream’s contents. Notice how an increase in the ‘user’ share of server CPU

utilization results in a reduction of the ‘system’ share (and network blocking time), as messages are

being “filtered out”.

Figure 47 shows the effects on CPU load at the server for our four example data streams. Each

sub-figure corresponds to a different message size: (a) 100K, (b) 10K, (c) 1K, and (d) 100B. The y-

axis represents the different specialization scenarios: (1) without specialization; (2) with an ’Identity’

streamlet; and (3), (4), and (5) with a streamlet that “filters out” 30, 60, and 90%, respectively, of

the stream’s contents. The percentage of CPU utilization is computed with respect to the execution

time of the first scenario (i.e. no-specialization), since the actual share of CPU utilization remains

constant or increases as the total time needed to transmit a fixed number of messages decreases.
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Figure 47: Percentage of Source CPU utilization consumed to transmit 20,000 messages with different
degrees of specialization at the source.

6.3.4 Active Streams Nodes Across the Datapath

Active Streams Nodes (ASN) are instantiated across the datapath to host the application- or service-

specific streamlets attached to data streams. Other projects have already demonstrated the potential

benefits of placing computation over the datapath, including proxy-based approaches [152, 48], and

protocol-oriented approaches [109, 126, 43], and more general infrastructures such as Conductor [150]

and Active Networks [130].

A clear need for ASN across the datapath appears when trying to customize data streams via

“upstream” migration of streamlets. The benefits of “upstream” migration start to decrease when

these actions unduly increase the computational load at the stream (intermediate) source. More

computationally expensive streamlets and a larger number of streamlets run by any give host would

eventually slow down its execution, thereby decreasing the performance experienced by its sinks. In

trying to understand this problem, we configured an experiment in which an increasing percentage of

sinks (clients) customize their streams at the source. Figure 48 contrasts server CPU utilization with

the end-to-end latency experienced by the clients when transmitting 20,000 1K-messages to 30 clients,

with a varying number of them specializing the stream at the source. The specialization transforms

the stream from 1K- to 100B-messages. The y-axis represents the percentage of clients applying this

transformation at the stream’s source. The dashed line shows the end-to-end latency perceived by

non-specializing clients, while the dotted line represents the one experienced by specializing clients.

α signals the point from which there are no additional benefits to be gained from specialization, and

β indicates the point of diminishing returns. The percentage of CPU utilization is computed with

respect to the execution time of the first scenario (i.e. no-specialization) since the actual share of

CPU utilization remains constant or increases as the total time needed to transmit a fixed number
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Figure 48: Percentage of Source CPU utilization contrasted with end-to-end latency.

of messages decreases.

ASNs ‘down’ the path could be used to host streamlets once the computational devices ‘up’ the

path start getting overloaded. Naturally the additional hops, although still allowing us to collect

some of the benefits of specialization, such as reductions in CPU utilization, it may translate in an

increasing end-to-end latency. Note that this will not hold if the available bandwidth through that

last hop were significantly restricted, as is the case in mobile and sensor rich environments, and in

many research collaboration scenarios.

6.4 Costs and Benefits of a Proactive Interface to Directory

Services

The Proactive Directory Service (PDS) is an efficient and scalable information repository and a core

component of our Active Streams Framework. The main innovative aspect of PDS is the inclusion

of a customizable proactive access mode as part of its client interface. Through this interface, PDS

clients can learn of objects (or types of objects) being inserted/removed from particular contexts

(such as addition or removal of services or devices) and/or about changes to pre-existent objects.

This section presents evaluation results that confirm the expected performance advantages of

PDS’ proactive approach. These experiments 4 contrast the scalability of PDS (featuring pull- and

push-based interfaces) with that of off-the-shelf implementations of DNS (BIND DNS 8.2.2-7 [24])

and LDAP (OpenLDAP 1.2.11 [47]) (both of which use a strictly pull-based approach). BIND DNS is

used because it is a highly optimized directory system; OpenLDAP is an LDAP implementation that

provides functionality and extensibility similar to PDS and form the basis for some metacomputing

directory services [44]. Before presenting the results of our experimental comparison, we compare

4Each host used in our test has 4 Intel Pentium Pro processors with 512MB of RAM, runs RedHat Linux 6.2, and
is connected with the other hosts by a 100Mbps Fast Ethernet.
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Figure 49: Timeline of client’s periods of inconsistency.

both approaches analytically.

6.4.1 Analytical Comparison

The loads imposed by pull-based and push-based directory interfaces can be compared through a

simple model in which a directory server manages a number of entities on behalf of their owners.

We assume that different clients want to keep track of different subsets of those entities.

Since clients cache copies of their entities of interest and owners update their entities’ attributes,

inconsistencies are expected to appear. Assuming a fixed period of time over which the owner of an

entity in the directory makes a series of updates, we wish to calculate the number of client requests

that would be necessary to maintain different degrees of consistency under pure pull- and push-

based models. Note that consistency problems exist in any system that uses some form of cache to

speed up access. While the consistency problem in directory services is similar to the Web cache

consistency problem [17], the consistency requirements of applications in our target environments

are significantly more stringent than those of the typical Web user.

Let U be a set of updates, ui, occurring over a period T at some random instants of time, and

let p be the frequency at which a client pulls a non-proactive server. The total time over which the

client will have an inconsistent copy can be computed as:

I =
U∑

i=1

di =
U∑

i=1

(p− ui mod p)

i.e. the client’s degree of consistency, or the percentage of time at which the client will have a

consistent copy, is:

(T − I)/T ∗ 100%

Note that the degree of consistency depends on the frequency at which the client requests an

update from the server and the rate at which the owner of the entity updates its attributes.

For example, if over a 30 hour time period the entity owner changes the object value at hours 5,

8, and 21 while the client polls the server for this object value every 10 hours, the client will have the

wrong value (5 + 9) hours over those 30, which corresponds to an accuracy of (30− 14)/30 = 0.53,

or 53%. This can be graphically represented as in Figure 49.

As the degree of consistency is determined by the client frequency of pulls and the entity-owner

rate of updates, so is the number of messages exchanged between the client and the server (and the
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Figure 50: Number of messages required to achieve a given degree of consistency.

Length of period: 40 minutes

Number of updates by owner: 15

Times of updates:

Update 1 2 3 4 5

Time 2.673 3.678 15.336 15.340 16.64

Update 6 7 8 9 10

Time 20.777 21.188 25.265 26.061 26.1568

Update 11 12 13 14 15

Time 26.846 28.906 30.257 35.388 37.218

Number of resolver’s pull intervals: 7

Pull intervals:

Period 1 2 3 4 5 6 7

Pull interval 0.1 0.4 0.8 1.2 1.6 2.0 40.0

Figure 51: Owner’s updates times and client’s pull intervals.
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associated load on resources) required to maintain a given degree of consistency. Figure 50 shows

the number of messages between the client and the directory server required to maintain a given

level of consistency for the updates and pull frequency quoted in Figure 51.

In contrast, a proactive interface allows applications to obtain a perfect degree of consistency at

a reasonable load on resources, by making the degree of consistency of the client data independent

of the frequency with which it is updated. For this example, over 800 messages are required to

obtain a perfect degree of consistency without proactivity, while with a proactive interface only 15

are needed.

6.4.2 Performance Comparisons

We now present evaluation results showing the expected performance advantages of PDS’ proactive

approach. We contrast the scalability of PDS (featuring pull- and push-based interfaces) with that

of off-the-shelf implementations of DNS and LDAP.

As already mentioned, a potential disadvantage of a proactive approach is the loss of control from

the client’s perspective since, after having registered its interest on changes to an object, it is then

at the “mercy” of the object’s owner. PDS clients can regain control by dynamically customizing

these notifications through filter functions instantiated at the server (or the object’s owner) and by

tuning these filters’ functionalities via remote updates of some of their parameters. We also present

initial experimental results that show that such customization, depending on the level of filtering,

need not translate into additional server processing load but can improve performance.

Intuitively, proactivity provides scalability and high performance by reducing the amount of work

done by clients (and correspondingly by servers) in order to become aware of updates. The following

metrics capture these facts:

• Degree of consistency: the percentage of time that a client has the correct value of a

directory entry. While pull-based clients must poll the server with increasing frequency to

increase their degree of accuracy, clients of proactive servers are always 100% accurate (because

they automatically receive updates when changes are made at the server).

• Number of client requests required: the number of client requests that is required for a

client to maintain a particular degree of consistency.

• CPU load on client: the processing required by the client to send a certain number of

requests.

• CPU load on server: the processing required at the server to respond to requests by the

client.

Proactivity reduces the load on the server by significantly decreasing the number of client requests

for updates. Client load is reduced because the server (or the object’s owner) is responsible for

notifying the client when changes occur to the object. The number of messages in the system is

reduced by eliminating client polling for updates, resulting in an optimal message-per-update. These

intuitive statements are validated by experimentation described next.
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Figure 52: Client load (as measured by system CPU time) needed to reach a given degree of consis-
tency.

We insert a number of updates occurring at randomly generated intervals over a fixed period of

time (see Figure 51). Since the actual loads on resources incurred in a particular situation depend

on such a wide variety of variables that we cannot characterize the entire performance space, we

decided to examine an illustrative example.

Given the sequence of owners’ updates quoted in Figure 51 and different degrees of consistency,

we measured the load imposed on client and server by using a pull-based, DNS and OpenLDAP,

and our push-based interface. For completeness we also show the load imposed by PDS’s own pull-

based interface. For our experiments all client-side caches were disabled and we ran DNS over TCP

(by setting its ’vc’ option) for purposes of comparison (OpenLDAP and PDS both use TCP for

transport). Figures 52 53 show the client and server loads for all four cases studied.

The benefits of a proactive interface for clients are clear from Figure 52. The figure shows that

by using PDS’s proactive mode, a perfect degree of consistency can be obtained, at a load on the

client that is one-fourth that of DNS and half that of LDAP.

Figure 53 shows the benefits of proactivity to servers. It shows that through proactivity, a perfect

degree of consistency can be obtained at a reasonably low server load. The scalability problems of a

pull-based interface, as faced by the DNS and LDAP implementations, are clear (our implementation

shows a similar, but less severe, trend).

These experiments illustrate, through a simple example, the potential costs and benefits of the

proactive approach. In fact, that the load imposed on these servers is not significantly serious.

Even at the point of perfect consistency (highest-rate of pull for pull-based clients), this particular

experiment imposes a load of only 400 requests/replies over 6 minutes, i.e. about 1.1 messages per

second.

In order to avoid the possible drawbacks of a proactive approach (i.e. the client’s loss of control),

we advocate the dynamic customization of notification channels through filter functions. Initial

experiments show that such customization, depending on the level of filtering, does not necessarily
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Figure 53: Server load (as measured by system CPU time) needed to reach a given degree of
consistency.
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imply additional processing load but can result in performance improvement. Figure 54 graphically

illustrates the costs/benefits of filtering. It shows the CPU utilization of a server sending an update

stream to a single client. In this case, the data stream consists of 100 byte notification records

generated at a particular rate. The figure shows the server’s CPU utilization for four filtering

scenarios: (1) no filtering, (2) with filtering but without rejecting any notification, (3) filtering out

50% of the notifications, and (4) filtering out all notifications. Specializing a notification channel

obviously adds to the server’s computational load in the form of additional overheads when no

notifications are rejected. However, the overhead is slight and is quickly recovered if the filter rejects

a significant fraction of the notification stream. At higher rejection rates, the use of a filtered stream

represents a cost savings to the server, despite the need to execute the filter function for every

notification.

The experiments confirm our hypothesis that an inactive model of client-server interaction re-

stricts the scalability of directory services, and they demonstrate the clear benefits of a proactive

approach.

6.5 Summary

This dissertation explores Active Streams, a novel middleware approach and its supporting frame-

work for building distributed applications and services for heterogeneous, highly dynamic environ-

ments. The reported evaluations quantify the costs and benefits of the approach.

We first present experimental results demonstrating the effectiveness of NDR, and its PBIO

implementation, as a general solution for self-describing communication units, also referred to as

wire-formats below, for heterogeneous distributed systems. The proposed framework relies on the

ECho publish/subscribe communication infrastructure [37] for data and control transport and as

the basis for its component integration mechanism. Measurements detailing ECho’s performance

demonstrate that ECho significantly outperforms other systems that provide similar functionality

and that it provides throughput and latency comparable to the most efficient middleware commu-

nication infrastructures now in common use. In Section 6.3 we present experimental results that

demonstrate the costs and benefits of Active Streams for end user applications. We then discuss

results that illustrate the basic overheads of our approach. Experiments indicate that the basic

streamlet mechanism implemented does not add significant overheads to data streaming, so that the

overheads introduced by the use of streamlets primarily depend on the functionality of the specific

streamlet(s) utilized by an application. We illustrate the potential benefits of stream specialization

and present results indicating that, counter to common wisdom, the benefits of placing streamlets up

the stream do not have to come at the cost of additional load to sources. The need for multiple points

of adaptation over the datapath, on the basis of performance, was illustrated in Section 6.3. We

conclude the chapter with results that demonstrate the basic performance of PDS and the benefits

of its proactive approach to providing directory services.



Chapter 7: Related Work

This chapter reviews a wide variety of research efforts that share many of the Active Streams

goals and design principles. Related work is examined from different areas including distributed

computing, software engineering and networking. We group these related efforts to put our work

into perspective. We conclude this chapter with an overall summary of the systems and approaches

covered.

7.1 Component-Based Approaches

Various projects have proposed component-based approaches to software development in wide-area

distributed computing [13, 65, 15]. Component architectures facilitate the construction of complex

applications by allowing the creation of generic reusable components and by easing independent

component development. Similar approaches have been proposed by the software engineering com-

munity over the last decade [107, 120] and their advantages have been widely recognized in industry,

resulting in the development of systems such as Enterprise Java Beans [128], Microsoft’s Component

Object Model and its distributed extension (DCOM) [36], and the developing specification of the

CORBA Component Model (CCM) in OMG’s CORBA version 3.0 [96].

Targeted to Grid-based service CCA [15] proposes an approach to building distributed systems

that is based on representing services as application-level software components. The WebFlow [65]

project aims to provide a Java-based coarse grain packaging model and framework for authoring

wide-area distributed applications. Blair et al. [13] propose a reflective-based approach to the de-

sign of configurable middleware together with an open and extensible component framework. In

contrast with Active Streams, all of these projects follow a coarse-grain object-based approach to

composition and have no provision for adaptation to changing environmental conditions or appli-

cation requirements. It has been argued elsewhere [60] that an object-oriented approach may be

ill-suited to wide-area distributed computing as it may complicate application programmability and

evolution.

7.2 Publish-subscribe Approaches for Communication and

Integration

Event services are an important component of many distributed applications and services. The

publish-subscribe paradigm they support is well-suited to the reactive nature of many novel appli-

cations, enables the rapid and dynamic integration of legacy software into distributed systems [98],
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supports software reuse, facilitates software evolution [52, 51], aids in the scalability and fault-

tolerance the system and is a good fit for component-based approaches.

Active Streams relies on ECho for communication and component integration. There are several

related research efforts concerned with the development of event notification systems and their

use for component integration; including IBM’s Gryphon [125], Siena [20], Elvin [119], JEDI [28],

JECho [153], and the work by Yu et al [151]. ECho is unique in its support of flexible and high

performance event-based communication in heterogeneous environments. In addition, ECho enables

the dynamic customization of notification channels, on a per-client base, through the instantiation

of general filter functions at the channel source.

7.2.1 Wire Formats for Heterogeneous Communication

ECho and, therefore, Active Streams rely on Native Data Representation for communication in

heterogeneous environments. Traditionally, performance has been the single most important goal of

high-performance communication packages such as PVM [129], Nexus [46] and MPI [45]. NDR is a

new approach to wire format that has the combined goals of flexibility and high performance.

Most of these packages support message exchanges in which the communicating applications

“pack” and “unpack” messages, building and decoding them field by field [129, 46]. By manu-

ally building their messages, applications have full control over message contents while ensuring

optimized, compiled pack and unpack operations. Relegating these tasks to the communicating

applications, however, means that the communicating components must agree on the format of

messages.

Other packages, such as MPI, support the creation of user-defined data types for messages and

fields and provide some marshalling and unmarshalling support for them. Although this provides

some level of flexibility, MPI does not have any mechanisms for run-time discovery of data types for

unknown messages, and any variation in message content invalidates communication.

In summary, the operational norm for high-performance communication systems is for all parties

to a communication to have an a priori agreement on the format of messages exchanged. The

consequent need to simultaneously update all system components in order to change message formats

is a significant impediment to system integration, deployment and evolution.

Component-based approaches require more flexible communication systems. This need has pro-

moted the use of object-oriented systems and of meta-data representations. Although object technol-

ogy provides for some amount of plug-and-play interoperability through subclassing and reflection,

this typically comes at the price of communication efficiency, and application programmability and

evolution [60]. For example, CORBA-based object systems use IIOP [95] as a wire format. IIOP

attempts to reduce marshalling overhead by adopting a “reader-makes-right” approach with respect

to byte order (the actual byte order used in a message is specified by a header field). This addi-

tional flexibility in the wire format allows CORBA to avoid unnecessary byte-swapping in message

exchanges between homogeneous systems, but it does not eliminate the need for data copying at

both sender and receiver. At issue here is the contiguity of atomic data elements in structured data

representations. In IIOP, XDR and other wire formats, atomic data elements are contiguous, with-

out intervening space or padding between elements. In contrast, the native representations of those
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structures in the actual applications must contain appropriate padding to ensure that the alignment

constraints of the architecture are met. On the sending side, the contiguity of the wire format

means that data must be copied into a contiguous buffer for transmission. On the receiving side,

the contiguity requirement means that data cannot be referenced directly out of the receive buffer,

but must be copied to a different location with appropriate alignment for each element. Therefore,

the way in which marshalling is abstracted in these systems prevents copies from being eliminated

even when analysis might show them unnecessary.

7.3 Active Approaches

The common thread connecting our approach as well as most of the components of its supporting

framework is the idea of activity. In Computer Science, a system entity is commonly referred to as

active when some sort of processing has been attached to it, and this processing is to be implicitly

invoked upon certain pre-stated conditions.

The idea of “activity” has been widely used in systems over the last ten years. In Active Mes-

sages [137], messages are bound to user level processing on the receiving end. This processing is

responsible for extracting the message from the network and integrate it into the on-going compu-

tation. Active networks [130] extend this idea by attaching processing to the network path [5, 11, 4]

or to the messages being forwarded through it [72, 143]. Active Disks [1, 113, 75], on the other

hand, attach processing to the I/O streams destined to or originated at disks. Active Services [54, 7]

propose the construction of value-added services following an active approach. In the Active Names

project [133], wide-area service names have attached processing responsible for locating the service

and transporting its response back to the client.

7.4 Adaptation Functionality in the Datapath

Active Streams could be viewed as distributed, adaptive, typed versions of Unix pipes [114]. The

original Unix form of interprocess communication, pipes appeared in Unix in 1972 at the sugges-

tion of M.D. McIlroy. Although neither the idea nor the implementation were totally new (the

‘communication files’ of the Dartmouth Time-Sharing System [31] did nearly the same), they be-

came one of the classical contributions of Unix to the culture of operating systems and command

languages. In Active Streams, as in Unix pipes, data streams flow from sources, through a series

of modules with standardize input and output, and are ultimately delivered back to their clients.

Active Streams extends this concept to distributed environments, allows multiple I/O streams per

module (or streamlets), and supports the run-time attachment/detachment of modules for service

customization and/or application adaptation.

Other projects have proposed the injection of modules with application functionality into the

datapath for adaptation. The introduction of such functionality can be done (only) at end-points

or across intermediate nodes in the datapath.

Badrinath et al. [9] present a conceptual framework for adaptive software systems that synthesize

the commonality of various of such projects with which the authors have been involved. Our Active
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Streams model has much in common with the proposed framework as both advocate dynamic adap-

tation over the datapath to changing environmental conditions and application requirements. In

contrast to Active Stream, their model associates application specific adapters with their equivalent

of our Active Streams Nodes (Adaptation Agencies) instead of with the actual data streams. We

have opted to associate streamlets with streams as streamlets are location-independent and their

mapping onto nodes is determined at run-time in response to variable environmental conditions.

7.4.1 End-Point Adaptation

Rover [73] implements a proxy-based architecture specifically tuned for client-server, mobile appli-

cations. The system uses Queued Remote Procedure Calls to overcome periods of dis-connectivity

and to better utilize the network link by scheduling transactions intelligently. Rover also makes

use of Relocatable Dynamic Objects to offload some resources by, for example, trading upstream

compression for network bandwidth savings. Rover has no provision for run-time adaptation to

changing environmental conditions.

Odyssey [91] is another application-aware approach to adaptation intended primarily to assist

client/server interaction in mobile environments. The Odyssey system consists of a viceroy, for

resource management; a set of type-specific wardens that handle the intercommunication between

clients and servers; and applications that negotiate with Odyssey to receive the best level of service

availability. Odyssey has no consideration for the dynamic insertion and composition of wardens

and provides no support for dynamic composition of adaptation across multiple nodes, making it

not flexible enough to cope with the characteristics of our target environments.

The TranSend [48] proxy addresses both network and system heterogeneity by providing an extra

level of indirection in the transfer paths between clients and servers. Proxies transform retrieved

data, primarily images, to representation that best suit the client connectivity. In the TranSend

architecture, clients rendezvous with the system through a front end. The front end contacts the

load manager, which deploys transcoders on behalf of the users. Similar to the two previous projects,

TranSend provides no support for dynamic composition of adaptation across multiple nodes.

Zenel and Duchamp [152] describe a general design of a proxy-based architecture that includes

the notion of “filters” at an intermediate host or proxy server. While the architecture is relatively

general, their system does not address issues of multiple coordinated adaptations.

DataCutter [10] is a middleware infrastructure that provides support for processing of large

datasets from archival storage systems over wide-area networks. The project’s main focus is on

access to archival storage data, including support for indexing and accessing of multidimensional

datasets. As with Active Streams, an application processing structure is decomposed into a set

of processes, called filters, following a stream-based programming model derived from the research

group’s earlier work on active disks [1]. However, the framework is fundamentally proxy-based and

does not consider run-time adaptation to variations on environmental conditions.

Proxy-based solutions have demonstrated the potential benefits of using the processing power

available on the datapath, as they depart slightly from the basic client/server model by introducing

a third entity, the proxy server. New environments provide additional processing units in the dat-

apath, a potentially greater number of idle hosts and a longer, more complex network connecting
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clients and servers. These characteristics indicate the need for more general multi-point approach

to adaptation. Although multiple proxies could be distributed over the datapath, the paradigm

provides no assistance in making them cooperate.

7.4.2 Distributed Adaptation

Distributed adaptation can be application-transparent or application-aware and can occur at the

network or application levels. Protocol Boosters and Transformer Tunnels support transparent

network adaptation at the protocol level through the insertion of functional units in the datapath

for the incremental construction of protocols [43], or the creation of tunnels in order to deal with

problematic links [126]. Our approach is complementary to these, low-level application-transparent

adaptations.

More general than the previous approaches and also complementary to our work, Active Networks

[130] provide an infrastructure that allows application code to be attached to individual packets or

deployed over the network routers. Active networks are packet-switched networks in which packets

can contain code fragments that are executed on the intermediary nodes. The code carried by the

packet may extend and modify the network infrastructure. The goal of active network research

is to develop mechanism to increase the flexibility and customizability of the network and reduce

the difficulty of integrating new technology and standards into a shared network infrastructure.

Two commonly distinguished approaches to active networking are: programmable switches [5, 11, 4]

and capsules [143, 94, 72]. The first approach adds functionality to nodes out-of-band from the

packets being processed by the node. In the capsule-based approach, capsules contain both code

and data as they move through the network and are executed on the nodes they encounter. Although

these approaches provide a very general adaptation mechanism, their deployment requires significant

changes to the existing network infrastructure.

Conductor [150] provides an application transparent adaptation framework that allows multiple

adaptation-modules spread along the datapath between application and services. Conductor pro-

poses the automatic deployment of multiple application-transparent adaptors over the datapath.

Although this transparency insures backward compatibility it also limits their flexibility. In contrast

to this, Active Services [7] allows client applications to explicitly start one or more services on their

behalf that can transform the data they receive from end services.

The goal of adaptive distributed approaches, however, is to provide good end-to-end services,

where the end points are located in applications. Without considering the applications’ and their

users’ needs, no adaptive solution at the network level alone can solve the entire problem. Ninja [56],

CANS [49] and Active Frames [84] are three projects that, as Active Streams, take an application-

level approach to adaptation.

Ninja [56] proposes a data flow model for composing services that is similar to the model under-

lying Active Streams. However, Ninja is intended to provide robust cluster-based services, and it

does not consider dynamic adaptation of data paths or of the paths’ components.

CANS [49] is an application-level framework for injecting application-level functionality into the

datapath. The CANS infrastructure is closely related to Active Streams as both support the dy-

namic composition of application functionality over datapaths as well as their run-time adaptation to
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changing environmental conditions. CANS proposes an interesting extended-type-based composition

to automate component selection based on links characteristics. The CANS infrastructure has been

implemented on Windows 2000 and uses Java VM as the execution environment at its intermediate

hosts. Despite the high-level similarities, both approaches differ in various important aspects includ-

ing: the Active Streams focus on wide-area, heterogeneous, and highly-dynamic environments; its

adoption of event-based techniques for component integration; and its target on high-performance

applications.

Focus on interactive heavyweight services such as scientific visualization, Lópes and O’Hallaron [84]

propose ”Active Frames”, an application-level equivalent to the integrated, ”capsule” approach to

active networks [130]. Active Frames are application-level transfer units that include both appli-

cation data and a program to be executed over this data. Frames are processed by frame servers

installed along the datapath from sources to sinks. Server’s functionality can be extended by active

frames programs through (Java-based) dynamic class loading or, at initialization time, by the in-

clusion of application-level libraries. In contrast, Active Streams tries to preserve the semantics of

carrying code with every frame while providing the performance achieved when the code is statically

loaded in the necessary nodes along the path. If almost each application data frame were to require

a new program, a fully dynamic scheme as the one proposed by López and O’Hallaron would provide

the necessary flexibility, and the additional overhead would be justified. However, we expect that

most frames would require a common enough set of functionality to suggest a demand pull-based

approach that would allow the amortization of the deployment cost over a number of frames.

7.5 Resource-Aware Computing

Distributed applications executing in non-dedicated environments must be able to adapt to variation

on resource availability. A number of research efforts have proposed resource-aware distributed

computing and investigated adaptation models [124] and the right infrastructure support needed

by such an approach. Bolliger et al. [14] present a framework-based to developing network-aware

applications, concentrating on network monitoring and the mapping between application-level and

network-centric quality metrics.

Remos [35] and the Network Weather Service [149] provide the needed infrastructure for resource

monitoring. Both approaches includes forecasting services, a facility much needed in distributed dy-

namic environments. Our work on ARMS is complementary to both, as we propose active interfaces

to resource monitoring systems in an attempt to improve application reactivity.

Odyssey [91] seeks to provide a more general approach to resource-aware computing by modifying

the interface between applications and the operating system. Their measurement-based approach

employs receiver-driven adaptation and concentrates on orchestrating multiple concurrent resource-

aware applications on the client. In contrast, our framework uses distributed client- and sender-based

adaptation but we have not yet dealt with the complications of multiple concurrent applications.
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7.6 Repository Services

ANTS [143] and PAN [94], both capsule-based active network frameworks, provide an automatic

demand pull code distribution service to transfer capsules’ associated code objects. Closer to our

Streamlet Repository Service, Decasper and Plattner [33] propose a design for distributed code

caching for active networks that makes use of trusted code servers for distributed active modules.

Software Dock [63] and Tivoli’s TME/10 [68] are two architectures that support release man-

agement, the process through which software is made available to and obtained by its users. Both

include support for configurations, dependencies, installation, and inventory but Tivoli’s TME/10

assumes a centralized control with a single site for configuration and releases; while Software Dock

is designed as a system of loosely-coupled, cooperating, distributed components, bound together by

a wide-area messaging and event system.

7.7 Service Discovery

There are many variants on the common theme of directory services. Classical directory services tend

to contain descriptive, attribute-based information on a variety of objects but, generally, without

supporting complicated transactions or roll-back schemes as those found in traditional database

management systems. However, none support the ability to proactively notify clients of updates as

in PDS.

Grapevine [12] and Global Name Service [80] were two pioneering distributed directory services.

Other more recent services such as DNS [87] and the X.500 Directory Service [112], provide such

services under the assumption of fairly stable mappings between objects’ attributes and their values.

Such an assumption allows them to make heavy use of caching to improve look-up performance and

service scalability. However, they are unsuited for applications in which updates occur with even

moderate frequency.

Other more recent research includes the Intentional Naming System (INS) [2] which integrates

name resolution and routing. INS allows clients to send messages by describing the attributes of

the destination rather than its location on the network. Active Names [133] maps remote service

names to chains of mobile programs responsible for locating the remote objects and transporting

back the response. Both Active Names and INS concentrate on the problem of efficient and flexible

name-to-object resolution, as opposed to PDS’ emphasis on providing low-impact client consistency.

Each of these objectives is desirable in a wide-area environment, and the concept of proactivity is

certainly compatible with either Active Names or INS.

Directory services supporting entries with attributes have made feasible service and resource

discovery by processing queries containing a set of desired attributes. Jini [139], the Service Loca-

tion Protocol (SLP) [134], and the Service Discovery Service [29] all provide attribute-based service

discovery for heterogeneous devices. PDS also supports retrieval of entities based on attributes. Jini

provides services using Java RMI as a transport mechanism; PDS uses a fast binary transport encod-

ing mechanism that provides superior performance. PDS does not address issues of authentication

and secure communication as does SDS. The proactive approach of PDS would be complementary
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to any of these services.

The use of proactivity in directory services has some precedents in DNS NOTIFY [136], the

Ninja’s Secure Directory Service (SDS) [29], and Huang and Steenkiste’s proposal [67] for an SLP-

based wide-area directory service. RFC 1996 proposed a mechanism for prompt notification of

zone changes (DNS NOTIFY) through a proactive approach. In SDS, services in the environ-

ment announce (broadcast) themselves periodically on a well-known multicast channel. Huang and

Steenkiste propose [67] the combined use of pull- and push-based techniques to increase the scal-

ability of service information distribution. In local area networks services use a push-model to

announce their services within their domain, while in the wide-area directory agents actively look

for such information. All these proposals, however, maintain a passive client interface and, thus,

their associated scalability problems.

Our work on PDS has some similarities with research on maintaining cache consistency, although

the consistency requirements of distributed applications using PDS may be more stringent than those

of the typical Web user. Gwertzman and Seltzer [62] provide a detailed analysis of World Wide

Web cache consistency approaches using trace-driven simulation. Cao [17] reports the advantages

of proactivity in maintaining cache consistency between Web browsers and servers; consistency

is maintained by servers proactively notifying clients (browsers) of changes through invalidation

messages. The clients are still responsible for retrieving the updated web page from the server.

Proactivity can be seen as an extension of invalidation. With an invalidation approach, when the

client wants to make use of an object after its cached copy has been invalidated, it needs to retrieve

a fresh copy. With proactivity, the server pushed the update together with (or instead of) the

invalidation. Given the size of most of the objects we expect to keep in the directory, the additional

cost of this approach is not significant. Even if the frequency of updates, and so invalidations, were

significantly bigger than the frequency of use of the cached object by the users; or if the sizes of the

object where to be big enough to tilt the cost-benefit analysis against basic proactivity; dynamically

customized proactivity will be a better answer than basic invalidation. Clients can customized

proactivity to return only a subset of the object attributes, restrict the update to the modified part

or to the difference between the previous and new state, or even retreat to simple invalidation.

7.8 Active Streams and Infosphere

The increasing proliferation of computing into the physical world and the associated, explosive

growth in available information have spawn a number of research projects aimed at creating new

paradigms for human-computer interaction. Infosphere [97] is one of five projects funded by the

DARPA/ITO’s Ubiquitous Computing program [30] pursuing this vision. The project, a research

collaboration of the Georgia Institute of Technology and the Oregon Graduate Institute, has focused

on world-wide, adaptive information flows for composing virtual information spaces for interaction.

The Infosphere project addresses a wide variety of issues from quality of service guarantees to

specialization and domain specific language techniques [110].

The research presented in this dissertation is part of this broader effort. The Active Streams

approach and its supporting framework address a subset of the technical challenges addressed by
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the Infosphere project, focusing on the inherent heterogeneous nature of these new information-rich

environments and the dynamically varying demand and availability of their resources. Other issues

addressed by the Infosphere projects include quality of service guarantees, automated generation

and composition of data streams, and standing queries for monitoring of information flows.

7.9 Summary of Related Work

The work presented on this dissertation is influenced by research ideas from a number of different

related areas. Many of the ideas have originated in early work done by our group concerning on-

line steering and visualization of high-performance scientific applications [70, 121, 135, 118, 61] and

resource-aware computing [71, 78]. Active Streams is part of the Infosphere Expedition [97], a much

broader research effort aimed at creating the virtual spaces of interaction for the post-PC era of

computing.

Various projects have proposed component-based approaches to software development in wide-

area distributed systems as they facilitate the construction of complex applications by allowing the

creation of generic reusable components and by easing independent component development. Active

Streams uses the ECho distributed event system for communication and component integration and

we briefly surveyed related work on this area.

ECho and, thus, Active Streams rely on Native Data Representation, a new approach to wire-

format in heterogeneous communications with the combined goals of flexibility and high performance.

We have reviewed alternative solutions and compared them with our NDR approach.

Active Streams shares its goals with many recent efforts that propose the injection of application

functionality into the datapath and the use of run-time monitoring and dynamic adaptation to cope

with changing environment conditions and application requirements. We have reviewed work in

end-point and distributed adaptation, as well as related projects in resource-aware computing.

An important part of this dissertation’s contribution is the design and implementation of an

architecture for building adaptive and extensible distributed systems following an Active Streams

approach. We thus reviewed some of the work that relates to these framework components, including

work on resource monitoring, repository, and directory services.

The systems discussed above have demonstrated the value of customizing service functionality,

dynamically extending clients, and adapting applications and services to dynamically changing envi-

ronments. Building on these previous efforts while recognizing their limitations lays the foundation

of this work. Active Streams provides an approach to constructing adaptive distributed applications

and services that exhibits these characteristics.



Chapter 8: Conclusions

This chapter summarizes key contributions of the Active Streams approach presented in this disser-

tation. A brief description of the approach main components is included together with a discussion

of our main contributions. In closing, future research directions are discussed, and specific opportu-

nities for future exploration are highlighted.

8.1 Summary

This dissertation explores Active Streams, a novel middleware approach and its supporting frame-

work for building distributed applications and services for heterogeneous, highly dynamic environ-

ments. Our approach supports the dynamic customization of services, the run-time extensibility

of applications, and the dynamic adaptation of applications and services to environmental changes.

The approach adopts a component-based model to system programming centered around two simple

abstractions - streams and streamlets. Streams are sequences of typed, self-describing, application-

specific data units connecting parts of and applications and services. These streams are made active

by attaching streamlets, application- or service-specific location-independent functional units.

We presented the design and implementation of a framework that supports this approach. The

Active Streams framework supports dynamic system adaptation at multiple levels and points in the

underlying platform; it provides a pull-based service for code distribution with security considera-

tions; it facilitates the needed infrastructure for resource monitoring, self-monitoring and adaptation;

and it includes a directory service with an extended proactive interface more suited to the dynamism

of the targeted environments.

The Active Streams Framework has been use in a number of class’ projects at Georgia Tech. In

this dissertation we presented our experiences with the implementation of two applications inteded

to demonstrate the utility and flexibility of the Active Streams approach.

Finally, we reported evaluations inteded to quantify the costs and benefits of the approach. We

presented experimental results showing the benefits in performance and flexibility of PBIO, and

reported results from a detailed performance evaluation of ECho demonstrating how it significantly

outperforms other systems that provide similar functionality, offering throughput and latency com-

parable to the most efficient communication middleware. We presented results that demonstrated

the costs and benefits of Active Streams for end-user applications and discussed evaluations that

indicated the basic overhead of our approach, the benefits of stream specialization, and the need

for multiple points of adaptation over the datapath. Reported experiments have shown that the

basic streamlet mechanism implemented does not add significant overheads to data streaming, so
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that the overheads introduced by the use of streamlets primarily depend on the functionality of

the specific streamlet(s) utilized by an application. We illustrated the potential benefits of stream

specialization and presented results indicating that, counter to common wisdom, the benefits of

placing streamlets up the stream do not have to come at the cost of additional load to sources. The

need for multiple points of adaptation over the datapath, on the basis of performance, was shown in

Section 6.3. We also presented evaluation results that demonstrate the basic performance of PDS,

on of our framework’s main components, and the benefits of its proactive approach to providing

directory services.

8.2 Future Directions

This thesis opens up several opportunities for future work. Some of the ideas worth exploring directly

extend the Active Streams Framework while other touch upon the application of our work to other

research problems.

A promising research area is the use of the Active Streams approach to build customizable

wide-area data distribution. Through the strategic placement stream of specializations one could

potentially increase the ratio of information per data flowing through the environment while mini-

mizing the number of multiple instances of the same data flow over a given data link.

Wide-area resource allocation is another avenue for future research. The use of Active Streams

Nodes by multiple applications, scheduling policies for streamlets, heuristics for the automatic place-

ment of streamlets over the Active Streams Node overlay network are just but a few of them.

Finally, various interesting issues remain to be address in the context of safety and security in

Active Streams.
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“I hope that posterity will judge me kindly, not only as to the things which I have ex-

plained, but also to those which I have intentionally omitted so as to leave to others the

pleasure of discovery.” -Rene Descartes
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