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ABSTRACT
Peer-to-peer (P2P) systems represent some of the largest
distributed systems in today’s Internet. Among P2P systems,
BitTorrent is the most popular, potentially accounting for
20-50% of P2P file-sharing traffic. In this paper, we argue
that this popularity can be leveraged to monitor the impact
of natural disasters and political unrest on the Internet. We
focus our analysis on the 2011 Tohoku earthquake and
tsunami and use a view from BitTorrent to show that it is
possible to identify specific regions and network links where
Internet usage and connectivity were most affected.

1. INTRODUCTION
On Friday, March 11th, 2011 at 2:46 PM local time, a

9.0 magnitude earthquake triggered a massive tsunami off
the coast of Tohoku, Japan. Once the tsunami reached land,
tsunami runup reached as high as 40 meters above sea level
and up to 10 km inland, leaving 561 km2 of Japan inundated.
The Tohoku earthquake is one of the top 5 most powerful
earthquakes on record [18]. In addition to the significant loss
of life, the event caused extensive damage to infrastructure
– ranging from buildings and roads to power plants and
submarine communication cables.

In this paper, we argue that globally popular distributed
systems provide a unique perspective to monitor the impact
of this and similar natural and man-made phenomena on
communication networks. We show the potential of this
approach by analyzing the impact of the Tohoku event using
the view provided to us through BitTorrent, a popular P2P
file-sharing system.

To evaluate the impact of this particular event, we focus
our analysis on application and network data from peers
located in or communicating with others through Japanese
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networks. We study three months of data from January
1st, 2011 to March 31st, 2011, which covers the event as
well as its aftermath. This data is contributed by peers
using the popular Vuze BitTorrent client [17] and running the
Ono [3] and NEWS [4] extensions we have made available
previously.

Beyond application specific data (such as number of
connected peers and download/upload rates per torrent), our
dataset includes per-connection data such as transfer rates
and the results of traceroutes to random subsets of connected
peers. The dataset does not include any information that
can identify the downloaded content. We combine this
unique perspective with several datasets that characterize the
severity of the earthquake and tsunami, by geography, to
understand the correlation between real-world, application
and network-level events.

We first examine the impact of the Tohoku earthquake and
tsunami on BitTorrent usage. Our data reveals the expected
relationship between application usage and proximity to the
event epicenter – with a total BitTorrent usage drop of up
to 80%. We then use our collected traceroute measurements
to characterize the impact of the event on the underlying net-
work. We identify a subset of popular, high-latency network-
level hops as potential submarine cables and analyze their
dynamics before, during and after the event. Our analysis
corroborates and extends, to the best of our knowledge, the
reported set of links that were potentially affected by the
earthquake.

After discussing our approach and related work in Sec. 2,
we describe the data sets we study in Sec.3 and present our
analysis of system and network dynamics that coincide with
the Tohoku earthquake and tsunami in Sec. 4. We discuss
ongoing work and conclude in Sec. 5.

2. APPROACH AND RELATED WORK
This paper studies the impact of natural disasters as

reflected in the state and dynamics of a globally distributed
application. We do this by combining the application and
network level view of ubiquitous distributed applications
with publicly available data related to the event of interest.
We have previously applied this approach to analyze BitTor-



rent’s view of the anthropogenic Egypt and Libya Internet
disconnections from early 2011 [1].

This approach is closely related to previous work on the
use of globally distributed applications for early detection
and localization of network anomalies [4]. Others have
analysed the network impact of real-world events such as
natural disasters and political unrest (e.g. [5, 10, 11, 14, 16])
leveraging data from in-network monitoring, targeted mea-
surements and publicly available data. Recently, Schulman
and Spring [15] present an interesting analysis of the impact
of small weather events on residential host failures.

3. DATA SETS
For our study of the impact of the March 2011 Japanese

earthquake and tsunami on the Internet, we integrate mea-
surements from the event1 with data from BitTorrent users
spread around the world. The following paragraphs describe
both datasets.

3.1 Earthquake and Tsunami
To quantify the geographic distribution of earthquake

severity across Japan, we use a publicly available data set
of displacement – how far the land moved – across 1,218
points in Japan [9]. We then map each of these points
to one of the 47 prefectures (subnational jurisdictions) in
Japan. We are able to map over 95% of these points to a
prefecture; the remaining 5% are located underwater and are
therefore not considered. The mapped points cover each of
the 47 prefectures with a median of 20 measurement points,
ranging from 7 to 160 points. We average the data points for
each prefecture, and normalize by the maximum prefecture
average.

We also map tsunami data as reported by the Japan
Meteorological Agency [8] to prefectures. The data set
contains data for 148 locations (at city-level granularity),
where each point measures the maximum increase in water
level. Using a combination of automated and manual
techniques, we are able to map 95% of these measurements
to a prefecture; the unmapped data points were either islands
with small populations or ambiguously named locations with
minimal reported tsunami impact. The mapped points cover
37 of the 47 prefectures. We use the same methodology as
with the earthquake data to obtain the normalized tsunami
impact by prefecture.

3.2 BitTorrent
We consider a 3-month period of data collected by users

of the BitTorrent peer-to-peer file-sharing system, spanning
from January 1st, 2011 to March 31st, 2011. This period
covers the Tohoku event as well as a number of weeks
previous to the event; we use the data from before the event
to characterize “typical” behavior prior to the earthquake.
We also study almost three weeks of data following the
earthquake to identify presistent changes in BitTorrent and
1All Japan map data comes from [2] and [7].

Label Start End
Before 1 Jan., 00:00 10 Mar., 5:00
Day before 10 Mar., 05:00 11 Mar., 5:00
Event 11 Mar., 05:00 12 Mar., 5:00
Day after 12 Mar., 05:00 13 Mar., 5:00
After 13 Mar., 05:00 31 Mar., 00:00

Table 1: Time periods in our data set. All times are
in UTC. The 5:00 cutoff coincides with the earthquake,
which occurred at 5:46 UTC.

the network that could have resulted from the event. We
divide our data set following the different time periods
shown in Tab. 1, and refer to the subset of our data that we
use in each of our analyses.

The BitTorrent data we analyze is contributed by users of
the Ono [3] and NEWS [4] plugins for the Vuze BitTorrent
client [17], collectively representing over 1.4 million instal-
lations. With the user’s consent, the plugins anonymously
report usage statistics and the results of passive monitoring
and active measurements. These data allow us to see system
usage patterns as well as the conditions of the underlying
network. For the analyses in this paper we use two types of
data: BitTorrent population statistics (who our users connect
to) and traceroute measurements to a subset of connected
peers (the paths that traffic takes through the network).

Specifically, our 3-month data set is comprised of globally
diverse reports from 452 K unique peers located in 182 dif-
ferent countries and 3,307 networks. Although only a small
fraction of these instrumented peers are actually located in
Japan (0.2%), a much larger portion (22.0%) have traffic
through Japan and are therefore valuable to our analysis.
Further, 66% of the networks and 95% of the countries that
our dataset covers have peers that generate traffic relevant to
our analysis.

3.2.1 BitTorrent population data
For our analysis of BitTorrent usage, we count the number

of unique connected BitTorrent peers (by IP address) across
all instrumented peer for each hour. Given the median
BitTorrent session length of 3.5 hours [12], this sampling
rate is sufficient to capture a continuous, representative
sample of peers participating in the BitTorrent system while
avoiding potential aliasing problems. By mapping IP ad-
dresses to geographic regions,2 we can determine the size
of the BitTorrent population in each geographic region over
time.

Our dataset includes peers in all 47 of Japan’s prefectures
in numbers that closely correlate with prefecture population.
Figure 1 plots the relationship between the prefecture’s
population size and the average number of BitTorrent peers
seen per hour for that prefecture. There is a strong positive
correlation (r = 0.90) between prefecture population and

2GeoLite City http://www.maxmind.com/app/geolitecity
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Figure 1: Scatter plot of prefecture population versus
the average number of BitTorrent peers seen per hour
in that prefecture. There is a strong positive correlation
between both metrics (r = 0.90). The black line shows
the result of linear regression for the two variables.
Our dataset provides a representative view of BitTorrent
usage throughout Japan. The gray line indicates the
minimum BitTorrent population threshold for inclusion
in our analyses – 10 peers per hour.

the number of BitTorrent peers our dataset finds in that
region.

Of the 47 prefectures, we exclude 6 that have fewer
than 10 BitTorrent peers seen per hour as these prefectures
introduce significant noise into our results. After dropping
the smallest prefectures, our BitTorrent population data
overlaps with the earthquake data in 41 prefectures (87%)
and with the tsunami data in 33 prefectures (70%). In total,
these prefectures account for the vast majority of Japan’s
population (95.9%).

3.2.2 Traceroute data
To see the path that BitTorrent traffic takes through the

network, each instrumented peer reports the result of regu-
larly run traceroute measurements to a random subset of the
peers to which they connect. Altogether, for the observation
period we have nearly 116 M traceroute measurements, of
which 2.1 M (1.8%) come from, go to, or traverse a Japanese
network. We use this subset of 2.1 M traceroutes in our
analysis of the impact of the event on the Internet.

4. ANALYSIS
In this section, we study the impact of the Tohoku earth-

quake and tsunami first at the application layer in terms
of BitTorrent usage, and then on routing dynamics at the
network layer.

4.1 Impact on BitTorrent
We begin by analyzing the relationship between BitTor-

rent usage and the impact of the Tohoku earthquake and
tsunami, by Japanese prefecture.
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Figure 2: Overall number of peers seen online in Japan,
for the week of the event (March 9-13) and before the
event (March 2-6). Week day ticks on the x-axis mark the
start of that day, and all times are in local time, JST. The
gray shaded region starts at the time of the earthquake
on Friday and lasts for 24 hours. Diurnal patterns are
perturbed for about 24 hours after the earthquake.

Using our data set, we estimate the number of BitTorrent
users online in a geographic region. Basically, each con-
nected peer is an indication of an active BitTorrent user. We
compile the set of unique IP addresses seen across all our
instrument peers, which gives us a representative sample of
online BitTorrent users. We apply this analysis to a sequence
of time intervals to build a time series of the number of
users online in a region. For this analysis, we only consider
BitTorrent peers in Japan, which we identify using IP-to-geo
mappings.

Figure 2 shows the number of Japanese peers seen in each
hour across two periods: the week before (Mar 2-6) and the
week of the earthquake (Mar 9-13). Before the earthquake,
we see diurnal patterns of usage where most users are online
near midnight. Furthermore, the Thursday and Friday night
peaks are approximately equal. In the 24 hours after the
earthquake, however, we observe a 25% reduction in online
peers relative to the previous week.

We next examine how the impact on BitTorrent (i.e.
population decrease on the day of the event) varies across
Japanese prefectures. Specifically, we compare each prefec-
ture’s average number of BitTorrent users across the “Day
before” and “Event” periods (Tab. 1). Figure 3 shows that
about 30% of prefectures saw more than a 20% reduction
in the number of users online on the day of the earthquake.
The rest of the prefectures were relatively unaffected, with
at most a 20% decrease in the number of users online. This
is consistent with other reports indicating that some regions
of Japan were more significantly impacted by the earthquake
and tsunami than others [8, 9].

Figure 4 maps the prefectures with the strongest BitTor-
rent impact (left), and those that were most affected by the
earthquake (center) and tsunami (right). Darker colored
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Figure 3: Distribution of percent change in average
BitTorrent population for each prefecture, comparing
the 24 hours prior to the earthquake and the 24 hours
after the earthquake. Most prefectures were relatively
unaffected, but about 30% of them had significant
declines of over 20% in BitTorrent usage.

prefectures indicate more significant impact. On each map,
the “X” marks the epicenter of the earthquake. Overall, the
prefectures that had the largest percent decreases in BitTor-
rent population tended to be closest to the epicenter (Fig. 4a).
The map of earthquake intensity shows a similar pattern
(Fig 4b). The tsunami predominantly affected prefectures
located on the east coast of Japan (Fig. 4c). Overall, the
prefectures with the largest declines in BitTorrent population
appear to have been affected most significantly by either the
earthquake or the tsunami.

We quantify the relationship between impact on BitTor-
rent usage and the earthquake or tsunami intensities across
prefectures by performing linear regression and correlation
analyses. Figure 5a shows a scatter plot between tsunami
intensity and BitTorrent impact across prefectures. We find
a significant correlation (r = −0.62), meaning that regions
more affected by the tsunami tended to have larger declines
in BitTorrent usage. Interestingly, when we apply a similar
analysis to earthquake intensity versus BitTorrent impact
(Fig. 5b), we find an even stronger correlation (r = −0.81).

We believe that one possible reason for the difference
in correlation strength between earthquake and tsunami
intensity is due to the granularity of our analysis. The
earthquake had a relatively uniform intensity across all
points in each prefecture – all cities were roughly affected
equally. However, in the case of tsunami intensity, the cities
on the coast were most likely to be impacted, while inland
cities may not have been affected by the tsunami at all. For
instance, Fukushima (the prefecture most affected by the
tsunami) is a outlier in Fig. 5a at 100% tsunami intensity,
but only -45% BitTorrent population change. The relatively
small BitTorrent impact would make sense because only a
small fraction of Fukushima cities are near the coast; most
cities in the prefecture were unaffected by the tsunami.
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(a) Tsunami intensity vs. BitTorrent impact
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(b) Earthquake intensity vs. BitTorrent impact

Figure 5: Scatter plot of tsunami and earthquake
intensity versus BitTorrent impact by prefecture. The
black line shows the linear regression between the two
variables. For earthquake intensity, this is computed
on a log scale. There is a negative correlation between
changes in BitTorrent population and tsunami impact
(r = −0.62); the more severe the tsunami was, the
greater the decline in BitTorrent usage. For earthquake
intensity, we find an even stronger correlation (r =
−0.81).

Overall, our application-level analysis of the impact of
the earthquake and tsunami on BitTorrent usage revealed the
expected relationship: prefectures that were most affected by
the disaster had the most significant reductions in BitTorrent
usage the day after the event. While we found that earth-
quake intensity was better correlated with BitTorrent usage
impact than the tsunami intensity, a finer-grained analysis
at the city level might reveal a stronger correlation between
changes in BitTorrent usage and tsunami intensity.

4.2 Network impact
In this section, we examine the impact of the earthquake

and tsunami on the flow of traffic at the network level. We
identify popular, high-latency IP-level hops in our traceroute
dataset as a heuristic for detecting submarine cables, and
focus on the dynamics of the popularity of such links during
and after the event. We consider the frequency of a link’s
appearance in traceroutes to be a proxy for the overall
number of BitTorrent connection across that link.



33°N

36°N

39°N

42°N

133°E 136°E 139°E 142°E

(a) BitTorrent change

33°N

36°N

39°N

42°N

133°E 136°E 139°E 142°E

(b) Earthquake intensity

33°N

36°N

39°N

42°N

133°E 136°E 139°E 142°E

(c) Tsunami intensity

Figure 4: Maps of Japan showing, by prefecture, percentage change in BitTorrent population size (left), earthquake
intensity (center) and tsunami intensity (right). The “X” marks the earthquake epicenter. Darker shaded regions were
more severely impacted by the earthquake or tsunami, or had a larger reduction in the number of BitTorrent peers seen
online in each region.
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Figure 6: CCDF of the number of times each “link” (pair
of consecutive IP addresses in a traceroute) appears. We
selected the top 1% most popular links as a threshold
(dashed gray line) to identify the set of the most popular
links.

4.2.1 Selecting popular long-haul links
To study the dynamics of the network as a result of the

earthquake, we focus on long-haul submarine cables given
their potential impact on all communication in and out of
Japan. To identify long-haul submarine cables we rely on
two heuristics:

• Popularity: Traceroute paths converge at submarine
cables because there are relatively few alternate routes.
Therefore, these links appear more frequently in our
dataset.

• High latency: Long-haul links (e.g. transcontinental
submarine cables) connect distant locations and there-
fore have relatively high propagation delays. These
delays manifest in traceroute latency measurements.
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Figure 7: CCDF of the latency across the top 1% of
popular links (from Fig. 6). To limit our analysis to long-
haul links, we selected the top 10% links (greater than
87 ms latency).

Figure 6 shows the distribution of the number of times
a link appears in the set of traceroutes from the “Before”
period. Given that there is a relatively small set of submarine
cables compared with the total number of links in the Inter-
net, we expect that links over submarine cables will appear
more frequently. Of the links in this set of traceroutes, we
select the top 1% most popular links. The dotted line in
Fig. 6 shows this threshold.

Next, we examine the distribution of link latency of this
set of 1% most popular links. We calculate the round trip
time over each hop using traceroute data. We select the
minimum of the 3 latencies for each hop to reduce the
impact of intermittent spikes in latency. Figure 7 shows
the distribution of average link latency. From this subset
of links, we select the top 10% by highest latency, which
corresponds to an average round trip time of at least 87 ms.
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Figure 8: The percentage of popular long-haul links that
appear each day. The shaded region represents the day
of the earthquake, March 11. The dotted lines before and
after the earthquake represent the average percentage
of these links that appeared per day during that period.
The average drop from 76% to 59% after the disaster
indicates that a significant fraction of previously popular
links were less frequently used afterwards.

This threshold is comparable to the 80 ms latency of the
fastest trans-Pacific cable, PC-1 [13].

4.2.2 Dynamics of popular links
Figure 8 shows the percentage of popular links seen each

day, between January and March. Before the earthquake,
approximately 76% of these links appear at least once each
day. However, from March 11th until the end of March, we
see only 59% of these links on a given day. This drop in
the percentage of links seen implies that traffic has shifted to
other routes in the network.

Figure 9 shows four scatter plots contrasting the popu-
larity of a link between two days. The left plots compare
a typical Thursday with a typical Saturday; the plots on the
right are from the day before and after the earthquake. Points
near the light dotted line (y = x) represent links that appear
about the same number of times each day, while points at
y = 0 are links that do not appear at all on the second day.
Links that appear at most half as often (or at least twice as
often) on the second day are in the shaded regions below
y = 1

2x (or above y = 2x).
Figures 9c and 9d focus on the subset of links near the

origin in Figures 9a and 9b, respectively. These figures more
clearly show a larger number of links appearing less than
half as often (or not at all) after the earthquake, compared
with the typical distribution. For instance, on Saturday,
March 5th, 10.6% of the links appeared half as often as on
March 3rd. However, on March 12th, after the event, 21.3%
of links appear half as often as on the 10th – twice more than
on a typical day. The white points in Fig. 9c and 9d represent
links that did not appear on the Saturday of that week. Note
that between the day before and after the earthquake, a
significantly larger number of links disappared, compared
to the number of links that disappeared the week before.

4.2.3 Shifting link popularity
In the previous section, we focused on links that were

popular before the earthquake. Here, we apply the heuristics
in Sec. 4.2.1 to the traceroutes in the “After” period of our
dataset. We add these links to the set of popular, high-latency
links from the “Before” period to also identify links with
increasing popularity after the event.

Figure 10 shows the probability density function of the
relative popularity of links in the “Before” and “After”
periods. The majority of links occur with approximately
the same frequency (i.e. near 1/1) before and after the
event. However, we observe a cluster of links with a ratio of
approximately 100/1 – these are links that seem to disappear
after the event. There is also a small cluster of links near
1/100; these links either appear in our traceroutes for the
first time or become significantly more popular after the
earthquake. Also note that the largest peak in the center
is slightly shifted to the left; we believe that this due
to the increasing popularity of common links that remain
operational after the event.

We aggregate these links by AS number and show in-
formation about several of these networks in Tab. 2. For
each network, we compute the fraction of links whose
popularity increased or decreased by an order of magnitude,
or appeared or disappeared from our traceroutes after the
disaster. We also corroborate these results with networks
reported to be affected by the earthquake via news reports.

KDDI and NTT, two large Japanese telecom networks
with the most links in our dataset, both had a significant
fraction of their links decline in popularity or disappear
from our traceroutes after the earthquake. This coincides
with reports in the media that some of their submarine
cables were damaged, which could result in re-routing
along a different path and therefore a change in the set of
popular links in our data set. In addition, for both of these
networks we also identify links that increase significantly in
popularity; these links may be along backup routes for the
damaged cables.

We also found several networks that do not have links
with significant changes in popularity due to their location
or regional scope. Both Oi (a major Brazilian ISP) and
one of NTT’s regional networks (AS4713) had no links with
significant changes in popularity. This is expected, since Oi
does not, to the best of our knowledge, operate trans-Pacific
cables, and regional networks are unlikely to communicate
over long-distance links.

Our analysis at the network level shows a significant
shift in the ASes belonging to KDDI, NTT (AS2914), Tata,
IIJ, and China Unicom. In all of these ASes, a large
number of popular links became an order of magnitude less
popular; all of these networks saw at least 10% of popular
links disappear from traffic through Japan, according to our
traceroutes. While some links may have been damaged in
the disaster, some shifts may have been a result of routing



0 50 100 150 200 250 300
Thursday (03-03)

0

50

100

150

200

250

300

S
a
tu

rd
a
y
 (

0
3

-0
5

)

(a) Typical, full view

0 50 100 150 200 250 300
Thursday (03-10)

0

50

100

150

200

250

300

S
a
tu

rd
a
y
 (

0
3

-1
2

)

(b) Event, full view
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Figure 9: Scatter plots comparing the number of times a link appears on two days (x and y axes). The diagonal light
gray line represents the consistent distribution, where the link is seen the same number of times each day. Links in the
shaded regions appeared at least half as often in one of the days, representing a significant change in popularity. Top
Left: comparison of links between a typical Thursday & Saturday. Top Right: comparison of the days before and after
the event (Thursday 3/10 and Saturday 3/12). The bottom two figures are zoomed in to focus on links appearing less
than 50 times on both days. The white points represent links that did not appear on Saturday of that week.

changes or if some traffic were no longer routed through
Japan.

5. CONCLUSION
In this paper, we examined the effects of the Tohoku

earthquake and tsunami on BitTorrent usage in Japan and
began studying its impact on the underlying network. By
leveraging the view of a popular P2P system, we find a
geographic correlation between the impact of the disaster
and a decrease in BitTorrent usage. Furthermore, low-level
measurements performed at end hosts allow us to identify
links that disappeared and changes in traffic routing.

Our analysis of the Tohoku event is an example of a more
general approach to understand the impact of real-world
events on Internet systems and networks from data provided
by large-scale distributed systems. We have also applied this
approach to identify country-wide Internet outages in Egypt

and Libya.3 As part of ongoing and future work, we are
investigating other application- and network-level metrics of
potential interest and identifying current world events for
study.
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ASN ISP Links Decreased Disappeared Increased Appeared Reported
2516 KDDI 354 15.8% 15.3% 6.8% 0.6% [6]
2914 NTT 333 33.0% 26.7% 13.8% 3.9% [6]
6453 Tata 93 36.6% 26.9% 9.7% 4.3% –
2497 IIJ 65 18.5% 13.9% 27.7% 23.1% –
3356 Level3 62 9.7% 6.5% 3.2% 0.0% –
3549 GBLX 53 1.9% 1.9% 0.0% 0.0% –
10026 Pacnet 36 11.1% 8.3% 11.1% 8.3% [6]
7738 Oi (Telemar) 34 0.0% 0.0% 0.0% 0.0% –
4837 China Unicom 33 36.4% 36.4% 0.0% 0.0% [6]
701 Verizon Business 26 3.9% 0.0% 0.0% 0.0% –
4713 NTT 9 0.0% 0.0% 0.0% 0.0% –

Table 2: Comparison of the changes in the frequency of popular links among ASes. “Links” is the number of links
in our set belonging to a particular AS. The “Decreased” and “Increased” columns show the percentage of links that
decreased or increased in popularity by a factor of 10 before or after the disaster. “Disappeared” and “Appeared” are,
respectively, the percentage of links that appeared in traceroutes only before or only after the day of the event. The
“Reported” column lists a reference to reports of links known to be damaged in that network.
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Figure 10: Probability density function of link popularity
ratio between “Before” and “After” traceroute datasets.
Most links appear with roughly the same frequency
in both periods, corresponding to the peak near 1/1.
However, we identify clusters of peaks near 100/1
and 1/100, which correspond to links that significantly
decreased or increased in popularity between the two
periods.
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