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Abstract
We present Dasu, a measurement experimentation

platform for the Internet’s edge. Dasu supports both
controlled network experimentation and broadband char-
acterization, building on public interest on the latter
to gain the adoption necessary for the former. We
discuss some of the challenges we faced building a
platform for the Internet’s edge, describe our current
design and implementation, and illustrate the unique
perspective it brings to Internet measurement. Dasu has
been publicly available since July 2010 and has been
installed by over 90,000 users with a heterogeneous set
of connections spreading across 1,802 networks and 147
countries.

1 Introduction
Our poor visibility into the network hampers progress
in a number of important research areas, from network
troubleshooting to Internet topology and performance
mapping. This well-known problem [8, 39] has served
as motivation for several efforts to build new testbeds
or expand existing ones by recruiting increasingly large
and diverse sets of measurement vantage points [15, 33,
37]. However, capturing the diversity of the commercial
Internet (including, for instance, end-hosts in homes and
small businesses) at sufficient scale remains an elusive
goal [17, 25].

We argue that, at its roots, the problem is one of
incentives. Today’s measurement and experimentation
platforms offer two basic incentive models for adoption –
cooperative and altruistic. In cooperative platforms such
as PlanetLab [31] and RIPE Atlas [35] an experimenter
interested in using the system must first become part
of it. Other platforms such as SatelliteLab [15] and
DIMES [37] have opted instead for an altruistic approach
in which users join the platform for the betterment of
science. All these efforts build on the assumption,
sometimes implicit, that the goals of those hosting the
platform and the experimenters that use it are aligned. As

much of the Internet’s recent growth occurs in residential
broadband networks [1] this assumption no longer holds.

This paper presents Dasu — a platform for network
measurement experimentation and the Internet’s edge
built with an alternate model that explicitly aligns the
objectives of platform hosts and experimenters. Dasu1

is designed to support both broadband characterization
and Internet measurement experiments and leverage their
synergies. Both functionalities benefit from wide net-
work coverage to capture network and broadband service
diversity. Both can leverage continuous availability
to capture time-varying changes in broadband service
levels and to enable long-running and time-dependent
measurement experiments. Both must support dynamic
extensibility to remain effective in the face of ISP policy
changes and to enable purposefully-designed, controlled
Internet experiments. Finally, both functionalities must
be available at the edge of the network to capture the end
users’ view of the provided services and offer visibility
into this missing part of the Internet [9].

This paper focuses on Dasu’s support for Internet mea-
surement experimentation, outlining our current design
and how it addresses some of the key challenges raised
by our goals.2 Dasu has been publicly available since
June 2010 and is currently in use by 90,222 users with
a heterogeneous set of connections spreading over 1,802
networks and across 147 countries.

We make the following contributions in this work:

• We present the design and implementation of Dasu
— an extensible platform for measurement experi-
mentation from the Internet’s edge.

• We describe the current deployment of Dasu and
present results demonstrating how the participating
nodes collectively offer broad network coverage,

1Dasu is a Japanese word that can mean “to reveal” or “to expose”.
2Please see [6] for a general description of Dasu’s support for

broadband characterization.



high availability and fine-grained synchronization
to enable Internet measurement experimentation.

• We use three case studies to illustrate the unique
perspective that a platform like Dasu brings to In-
ternet measurement. In the process, we demonstrate
Dasu’s capabilities to (i) simplify traditional mea-
surements (e.g., examining routing asymmetry), (ii)
reveal fundamental shortcomings in existing mea-
surement efforts (e.g., mapping AS-level topology),
and (iii) conduct novel experiments for original sys-
tem evaluations (e.g., examining the effectiveness
of a recently-proposed DNS extension).

The rest of this paper is structured as follows. We
put our work in context and provide further motivation
in Sec. 2. In Sec. 3 and 4 we outline the design and
implementation of Dasu and characterize our current
deployment. We present cases studies that illustrate the
benefits of a measurement experimentation platform that
runs at the Internet’s edge in Sec. 5. Finally, we discuss
future work and present our conclusions in Sec. 6.

2 Background and Motivation
The lack of network and geographic diversity in cur-
rent Internet experimentation platforms is well a known
problem [8, 39]. Most Internet measurement and system
evaluation studies rely on dedicated infrastructures [3,
5, 7, 31] which provide relatively continuous availability
at the cost of limited vantage point diversity (i.e. with
nodes primarily located in well-provisioned academic or
research networks that are not representative of the larger
Internet).

Several research projects have pointed out the pit-
falls when attempting to generalize results of network
measurements taken with a limited network perspective
(e.g. [8, 10, 27, 32, 45]). For example, consider the dif-
ferences in paths between PlanetLab nodes and between
nodes in residential networks. These two sets traverse
different parts of the network [9], exhibit different la-
tency and packet loss characteristics [12, 20] and result
in different network protocol behaviors [16].

2.1 Goals and Approach

An experimental platform for the Internet should be
deployed at scale to capture network and service diver-
sity. It should be hosted at the network edge to provide
visibility into this opaque part of the Internet. Such a
platform should allow dynamic extensibility in order to
enable purposefully-designed, controlled measurement
experiments, without compromising end-host security.
To support time-dependent and long-running experi-
ments, it should offer (nearly) continuous availability.
Last, it should facilitate the design and deployment of
experiments at the network edge while controlling the

impact on the resources of participating nodes and the
underlying network resources.

Dasu is an experimental platform designed to match
these goals. To capture the diversity of the commercial
Internet, Dasu supports both Internet measurement ex-
perimentation and broadband characterization and lever-
ages their synergies. In its current version, Dasu is built
as an extension to the most popular large-scale peer-to-
peer system – BitTorrent.3 The typical usage patterns
and comparatively long session times of BitTorrent users
means that Dasu can attain nearly continuous availability
to launch measurement experiments. More importantly,
by leveraging BitTorrent’s popularity, Dasu attains the
necessary scale and coverage at the edge of the network.
Dasu is tailored for Internet network experimentation
and, unlike general-purpose Internet testbeds such as
PlanetLab, does not support the deployment of planetary-
scale network services.

2.2 Challenges

Both strengths and challenges of a platform like Dasu
stem from its inclusion of participating nodes at the
Internet’s edge. For one, the increased network coverage
from these hosts comes at the cost of higher volatility and
leaves the platform at the “mercy” of end users’ behavior.
The types of experiments possible in such a platform
depend thus on the clients’ availability and session times
since these partially determine the maximum length of
the experiment that can be safely assigned to clients.
Such a platform must provide a scalable way to share
measurement resources among concurrent experiments
with a dynamic set of vantage points. It must also guar-
antee the safety of the volunteer nodes where it is hosted
(for instance, by restricting the execution environment),
and ensure secure communication with infrastructure
servers. Last, to control the impact that experiments may
have on underlying network and system resources, the
system must support coordinated measurements among
large numbers of hosts worldwide, each of which is
subject to user interaction and interference.

2.3 Related Work

Dasu shares goals with and builds upon ideas from
several prior large-scale platforms targeting Internet ex-
perimentation. Most active measurement and experi-
mentation research relies on dedicated infrastructures
(PlanetLab [31], Ark [7], Looking Glass servers). Such
infrastructures provide relatively continuous availability
and nearly continuous monitoring at the cost of limited
vantage point diversity. Dasu targets the increasingly
“invisible” portions of the Internet, relying on a direct

3A stand-alone version of Dasu has been developed and we plan to
release it in June 2013.
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incentive model to ensure large-scale adoption at the
Internet edge.

Several related projects use passive measurements or
restricted active measurements from volunteer platforms
to capture this same perspective (e.g., [15, 33, 35, 37,
38, 42]). In contrast, Dasu is a software-based solution
with a much broader set of measurement vantage points
that has been achieved by altruistic and hardware-based
systems, and supports a programmable interface that
enables complex, coordinated measurements across the
participating hosts. As such, Dasu shares some design
goals with Scriptroute [40] and SatelliteLab [15]). Un-
like Scriptroute, Dasu is intended for large scale deploy-
ment on end users’ machines, and relies on incentives
for user adoption at scale. Dasu also enables pro-
gramable measurements without requiring root access,
avoiding potential security risks and barriers to adoption.
SatelliteLab adopts an interesting two-tier architecture
that links end hosts (satellites) to PlanetLab nodes and
separates traffic forwarding (done by satellites) from
code execution. In Dasu, experiment code generates
traffic directly from hosts at the network edge.

Several systems have proposed leveraging clients in
a P2P system to measure, diagnose and predict the
performance of end-to-end paths (e.g., [11, 28]. Dasu
moves beyond these efforts, exploring the challenges and
opportunities in supporting programmable experimenta-
tion from volunteer end hosts.

3 Dasu Design
In this section, we provide an overview of Dasu’s design,
discuss several system’s components and briefly describe
the API supporting measurement experiments.

3.1 System Overview

Dasu is composed of a distributed collection of clients
and a set of management services. Dasu clients provide
the desired coverage and carry on the measurements
needed for broadband characterization and Internet ex-
perimentation. The Management Services, comprising
the Configuration, Experiment Administration, Coordi-
nation and Data services, distribute client configuration
and experiments and manage data collection. Figure 1
presents the different components and their interactions.

Upon initialization, clients use the Configuration Ser-
vice to announce themselves and obtain various config-
uration settings including the frequency and duration of
measurements as well as the location to which experi-
ment results should be reported. Dasu clients period-
ically contact the Experiment Administration Service,
which assigns measurement tasks, and the Coordination
Service to submit updates about completed probes and
retrieve measurement limits for the different experiment
tasks. Finally, clients use the Data Service to report
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Figure 1: Dasu system components.

the results of completed experiments as they become
available.

3.2 Experiment Specification

Dasu is a dynamically extensible platform designed to
facilitate Internet measurement experimentation while
controlling the impact on hosts’ resources and the un-
derlying network. A key challenge in this context is
selecting a programming interface that is both flexible
(i.e., supports a wide range of experiments) and safe (i.e.,
does not permit run-away programs). We rejected several
approaches based on these constraints and our platforms
goals. These include offering only a small and fixed set
of measurement primitives as they would limit flexibility.
We also avoided providing arbitrary binary execution as
handling the ramifications of such an approach would be
needlessly complex.

We opted for a rule-based declarative model for ex-
periment specification in Dasu. In this model, a rule
is a simple when-then construct that specifies the set
of actions to execute when certain activation conditions
hold. A rule’s left-hand side is the conditional part
(when) and states the conditions to be matched. The
right-hand side is the consequence or action part of
the rule (then) i.e., the list of actions to be executed.
Condition and action statements are specified in terms
of read/write operations on a shared working memory
and invocation of accessor methods and measurement
primitives. A collection of rules form a program and a
set of related programs define an experiment.

The rule-based model provides a clean separation
between experiment logic and state. In our experience,
this has proven to be a flexible and lightweight approach
for specifying and controlling experiments. Experiment
logic is centralized, making it easy to maintain and
extend. Also, strict constraints can be imposed on rule
syntax, enabling safety verification through simple static
program analysis.

Dasu provides an extensible set of measurement
primitives (modules) and a programmable API to
combine them into measurement experiments. Tables 1
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Method Params. Description
addProbeTask <probe> <params>

[<times>] [<when>]
Submit measurement request of the specified type.

commitResult <report> Submit completed experiment results to data server.
getClientIPs [] Return network information about the client including the

list of IP addresses assigned (both public and private).
getDnsServers [] Return the list of DNS servers configured at the client.
getEnvInfo [] Return information about the plugin and the host node,

including OS information and types of measurement
probes available to the experimenter.

Table 1: Dasu API – Methods.

Probe Params. Description
PING <dest-list (IP/name)> Use the local host ping implementation to send

ECHO REQUEST packets to a host.
TRACEROUTE <dest-list (IP/name)> Print the route packets take to a network host.
NDT [<server>] Run the M-Lab Network Diagnostic Tool [29].
DNS [<server>] | [<timeout>] |

[<tcp/udp>] | [<options>] |
<DNS-msg>] | <dest-list>

Submit DNS resolution request to a set of servers.

HTTP [server] | [<port>] |
[<HTTP-Req>] | <url-list>

Submit HTTP request to a a given < host, port > pair.

Table 2: Dasu API – Measurement modules currently supported.

and 2 provide a summary of this API and the current set
of measurement primitives supported. The API includes
some basic accessor methods (e.g. getClientIps,
getDnsServers and getEnvInfo). The method
addProbeTask serves to request the execution
of measurements at a given point in time. The
commitResult method allows results from the
experiment to be submitted to the Data Service after
completion.

Dasu provides low-level measurement tools that can
be combined to build a wide range of measurement
experiments. Currently available measurement primi-
tives include traceroute, ping, Network Diagnostic Tool
(NDT) [29], HTTP GET and DNS resolution. While this
set is easily extensible (by the platform administrators)
we have found it sufficient to allow complex experiments
to be specified clearly and concisely. For instance,
the experiment for the Routing Asymmetry case study
(Sec. 5.1) was specified using only 3 different rules with
an average of 24 lines of code per rule.

Measurements primitives are invoked asynchronously
by the Coordinator, which multiplexes resources across
experiments. Progress and results are communicated
through a shared Working Memory; through this working
memory, an experiment can also chain rules that sched-
ule measurements and handle results.

In addition to these active measurements, Dasu lever-
ages the naturally-generated BitTorrent traffic as passive
measurements (particularly in the context of broadband
characterization [6]) by continuously monitoring the
end-host Internet connection. Devising an interface

to expose these passively collected measurements to
experimenters is part of future work.

A Simple Example. To illustrate the application of
rules, we walk through the execution of a simple experi-
ment for debugging high latency DNS queries. Figure 2
lists the rules that implement this experiment. When rule
#1 is triggered, it requests a DNS resolution for a domain
name using the client’s configured DNS server. When the
DNS lookup completes, rule #2 extracts the IP address
from the DNS result and schedules a ping measurement.
After the ping completes, rule #3 checks the ping latency
to the IP address and schedules a traceroute measurement
if this is larger than 50 ms.

3.3 Delegating Code Execution to Clients

Dasu manages concurrent experiments, including re-
source allocation, via the Experiment Administration
Service. As clients become available, they announce
their specific characteristics (such as client IP prefix,
connection type, geographic location and operating sys-
tem) and request new experiment tasks. The Experiment
Administration (EA) Service assigns tasks to a given
client based on experiment requirements and character-
istics of available clients (e.g. random sample of DSL
users in Boston).

In the simplest of experiments, every Dasu client
assigned to an experiment will receive and execute the
same experiment task (specified as a stand-alone rules
file). Dasu also enables more sophisticated experiments
where experimenters specify which clients to use and
how to execute tasks based on client characteristics.
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rule "(1) Resolve IP address through local DNS"
when
$fact : FactFireAction(action=="resolveIp");

then
addProbeTask(ProbeType.DNS, "example.com");

end

rule "(2) Handle DNS lookup result"
when
$dnsResult : FactDnsResult(toLookup=="example.com")

then
String ip = $dnsResult.getSimpleResponse();
addProbeTask(ProbeType.PING, ip);

end

rule "(3) Handle ping measurement result"
when
$pingResult : FactPingResult()

then
if ( $pingResult.getRtt() > 50 )
addProbeTask(ProbeType.TRACEROUTE, $pingResult.ip );

end

Figure 2: Example measurement experiment for debugging
high latency DNS queries.

Dasu adopts a two-tiered architecture for the EA
Service, with a primary server, responsible for resource
allocation, and a number of secondary servers in charge
of particular experiments. The Primary EA server acts as
a broker, allocating clients to experiments, by assigning
them to the responsible secondary server, based on
clients’ characteristics and resource availability. The
Secondary EA server is responsible for task parame-
terization and allocation of tasks to clients according
to the experiment’s logic. While the customized task
assigned to a client is generated by the experiment’s
secondary server, all communication with Dasu clients
is mediated by the primary server who is responsible
for authenticating and digitally signing the assigned
experiments.

Submitting External Experiments. Dasu supports
third-party experiments through the two-tier architecture
described above. Authorized research groups host their
own Secondary EA server, with security and accountabil-
ity provided through the Primary EA server.

In addition to providing a safe environment for execut-
ing experiments, all experiments submitted to Dasu are
first curated and approved by the system administrators
before deployment. This curation process serves as an-
other safety check and ensures that admitted experiments
are aligned with the platform’s stated goals.

3.4 Security and Safety

Safely conducting measurements is a critical requirement
for any measurement platform and particularly for one
deployed at the Internet edge. We focus on two security
concerns: protecting the host and the network when
executing experiments. We expand on the former here
and discuss the latter in the following section.

To protect the host, Dasu uses a sandboxed environ-
ment for safe execution of external code, ensures secure

communication with infrastructure servers, and carefully
limits resource consumption.

Experiment Sandbox. To ensure the execution safety
of external experiments, Dasu confines each experiment
to a separate virtual machine, instantiated with limited
resources and with a security manager that implements
restrictive security polices akin to those applied to un-
signed Java applets. In addition, all Dasu experiments
are specified as a set of rules that are parsed for unsafe
imports at load time, restricting the libraries that can be
imported. Dasu inspects the experiment’s syntax tree
to ensure that only specifically allowed functionality is
included and rejects a submitted experiment otherwise.

Secure communication. To ensure secure commu-
nication between participating hosts and infrastructure
servers, all configuration and experiment rule files served
by the EA Service are digitally signed for authenticity
and all ongoing communications with the servers (e.g.
for reporting results) are established over secure chan-
nels.

Limits on resource consumption. Dasu must care-
fully control the load its experiments impose on the
local host, as well as minimize the impact that users’
interactions (i.e., with the host and the application)
can have on experiments’ results. To this end, Dasu
limits consumption of hosts’ resources4 and restricts the
launching of experiments to periods of low resource
utilization; the monitored resources include CPU time,
network bandwidth, memory and disk space.

To control CPU utilization, Dasu monitors the fraction
of CPU time consumed by each system component
(including the base system and each different probe
module). Dasu regulates average CPU utilization by
imposing time-delays on the activity of individual probe
modules whenever their “fair share” of CPU time has
been exceeded over the previous monitoring period.
Dasu also employs watchdog timers to control for long-
running experiments.

To control bandwidth consumption, Dasu passively
monitors the system bandwidth usage and launches ac-
tive measurements only when utilization is below certain
threshold (we evaluate the impact of this policy on
experiment execution time in Sec. 4.3). Dasu uses the
95th percentile of client’s throughput rates measured by
NDT to estimate the maximum bandwidth capacity of
the host and continuosly monitors host network activity
(using the commonly available netstat tool). Based
on pre-computed estimates of approximate bandwidth
consumption for each probe, Dasu limits probe execution
by only launching those that will not exceed the predeter-
mined average bandwidth utilization limit. Additionally
Dasu relies on a set of predefined limits on the number

4Currently 15% of any monitored resource.
5



of measurement probes of each type that can be launched
per monitored interval. While clients are allowed to
dispense with their entire budget at once, the combined
bandwidth consumed by all probe modules must remain
below the specified limit.

To restrict memory consumption, Dasu monitors the
allocated memory used by its different data structures
and limits, for instance, the number of queued probe-
requests and results. Measurement results are offloaded
to disk until they can successfully be reported to the
Data Service. Disk space utilization is also controlled by
limiting the size of the different probe-result logs; older
results are dropped first when the pre-determined quota
limits have been reached.

3.5 Coordination

In addition to controlling the load on and guaranteeing
the safety of volunteer hosts, Dasu must control the
impact that measurement experiments collectively may
have on the underlying network and system resources.
For instance, although the individual launch rate of
ping measurements is limited, a large number of clients
probing the same destination can overload it.

To this end, Dasu introduces two new constructs - ex-
periment leases and elastic budgets, to efficiently allow
the scalable and effective coordination of measurements
among potentially thousands of hosts. In the following
paragraphs, we describe both constructs and Dasu’s
approach to coordination.

Experiment Leases. To support the necessary fine-
grained control of resource usage, we introduce the
concept of experiment leases. In general, a lease is
a contract that gives its holder specified rights over a
set of resources for a limited period of time [19]. An
experiment lease grants to its holder the right to launch
a number of measurement probes, using the common
infrastructure, from/toward a particular network location.
Origin and/or targets for the probes can be specified
as IP-prefixes or domain names (other forms, such as
geographic location, could be easily incorporated).

Experiment leases are managed by the EA Service.
The Primary EA server ensures that the aggregated use
of resources by the different experiments is within the
specified bounds. Secondary EA servers are responsi-
ble for managing experiment leases to control the load
imposed by their particular experiments. To coordinate
the use of resources by the Dasu clients taking part in
an experiment, we rely on a distributed coordination
service [23]. The Coordination Service runs on well-
provisioned servers (PlanetLab nodes) using replication
for availability and performance. Clients receive the
list of coordination servers as part of the experiment
description.

Before beginning an experiment, clients must contact
a coordinator server to announce they are joining the
experiment and obtain an associated lease. As probes
are launched, the clients submit periodic updates to
the coordination servers about the destinations being
probed. The EA Service uses this information to com-
pute estimated aggregate load per destination and to
update the associated entries in the experiment lease.
Before running a measurement, the Coordinator checks
whether it violates the constraint on the number of probes
allowed for the associated source and destination, and
if so delays it. After a lease expires, the host must
request a new lease or extend the previous one before
issuing a new measurement. The choice of the lease
term presents a trade-off between minimizing overhead
on the EA Service versus minimizing client overhead and
maximizing its use.

Elastic Budget. An experiment lease grants to its
holder the right to launch a number of measurement
probes (i.e., a budget) from/toward a particular network
location. Due to churn and user-generated actions, the
number of measurement probes a Dasu client can launch
before lease expiration (i.e., the fraction of the allocated
budget actually used) can vary widely. To account for
this, Dasu introduces the idea of elastic budgets that
expand and contract based on system dynamics.

Elastic budgets are computed by the EA Service and
used to update bounds on experiment leases distributed
to Dasu clients. The EA Service calculates the elastic
budget periodically based on the current number of
clients participating in the experiment, the number of
measurement probes allowed, assigned and completed
by each client. The EA Service uses this elastic budget
to compute measurement probe budgets for the next lease
period for each participating client. This approach is well
suited for experiments where the server knows a priori
what destinations each client should probe. In the case
of experiments where the destinations to be probed are
not assigned by the server, but obtained by the clients
themselves (through a DNS resolution for example), the
same approach can be used if we conservatively assume
that a client will launch the maximum number of probes
per unit of time whenever it is online.

3.6 Synchronization

Dasu also provides support for Internet experiments that
require synchronized client operation (e.g. [34, 41]).

For coarse-level synchronization, Dasu clients include
a cron-like probe-scheduler that allows the scheduling of
measurements for future execution. All Dasu clients pe-
riodically synchronize their clocks using NTP. Assuming
clients’ clocks are closely synchronized, an experiment
can request the “simultaneous” launch of measurements
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Region Penetration Dasu Dasu Total
Total Countries

North America 78.6 % 21.45 % 60 %
Oceania/Australia 67.5 % 3.82 % 6 %
Europe 61.3 % 59.25 % 73 %
L. America/Carib. 39.5 % 1.68 % 65 %
Middle East 35.6 % 1.52 % 73 %
Asia 26.2 % 2.59 % 57 %
Africa 13.5 % 9.66 % 34 %

Table 3: Internet penetration6 and Dasu coverage (as
percentage of its total population of 90,222) by January 2013.

by a set of clients. We have found this to be sufficient to
achieve task synchronization on the order of 1-3 seconds.

For finer-grained synchronization (on the order of
milliseconds), Dasu adopts a remote triggered execution
model. All synchronized clients must establish persistent
TCP connections with one of the coordination servers.
These connections are later used to trigger clients actions
at a precise moment, taking into account network delays
between clients and coordination servers.

4 Deployment
We have implemented Dasu as an extension to a popular
BitTorrent client [43] as it offers a large and widespread
client population and a powerful interface for extensions.
We have made Dasu publicly available since June 2010.

To participating users, Dasu provides information
about the service they receive from their ISP [6, 36].
Access to such information has proven sufficient
incentive for widespread subscription with over 90K
users who have adopted our extension with minimum
advertisement.5

This section demonstrates how Dasu clients collec-
tively provide broad network coverage, sufficiently high
availability and fine-grained synchronization for Internet
experimentation.

4.1 Dasu Coverage

We show the coverage of Dasu’s current deployment
in terms of geography and network topology. Table 3
lists broadband penetration in each primary geographic
region and compares these numbers with those from our
current Dasu’s deployment.

Given the high Internet penetration numbers in Europe
and North America, the distribution of Dasu clients per
region is not surprising. Note, however, the penetration
of Dasu clients per region, measured as the percentage of
countries covered. As the table shows, Dasu penetration
is over 57% for most regions and is particularly high
for Latin America/Caribbean (65%) and the Middle East

5Upon download, users are informed of both roles of Dasu. Users
can, at any point, opt to disable experiments from running and/or
reporting performance information, without losing access to Dasu’s
broadband benchmarking information.

6http://www.internetworldstats.com
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Figure 3: Distribution of Dasu peers per AS (left). Distribution
of ASes covered by Dasu peers (right).

(73%), two of the fastest growing Internet regions. Even
in Africa Dasu penetration reaches 34%.

We also analyze Dasu’s network coverage in terms of
ASes where hosts are located. With our existing user-
base at the end of January 2013, we have Dasu clients in
1,802 different ASes. We classify these ASes following
a recently proposed approach [13], as follows:

• Tier-1: 11 known Tier-1s
• LTP: Large (non tier-1) transit providers and large

(global) communications service providers
• STP: Small transit providers and small (regional)

communication service providers
• Eyeball: Enterprise customers or access/hosting

providers

Figure 3a uses this classification to illustrate where
Dasu peers are deployed. As the figure shows, 93%
of Dasu peers are located in small transit providers and
eyeball ASes; with only minimal presence in large transit
and Tier-1 providers. Figure 3b presents the distribution
of all the ASes covered by Dasu peers. This figure shows
that 73% of the ASes covered by Dasu are eyeball ASes,
highlighting the effectiveness of Dasu as a platform for
capturing the view from the network edge.

4.2 Dasu Dynamics

In this section, we show that the churn from Dasu clients
is sufficiently low to support meaningful experimenta-
tion. This churn is a result of both the volatility of
Dasu’s current hosting application (i.e. BitTorrent) and
that of the end systems themselves. In the following
analysis, we focus on the hosting application dynamics.
In particular, we investigate what portion of clients are
online at any moment, and whether their session times
support common measurement durations.

First, we analyze Dasu clients’ availability, using the
percentage of clients online at any given hour over a 31-
day period. Figure 4 plots this for the month of January
2013. The fraction of available clients during the period
varies, on average, between 39% and 44% of the total
number of unique users seen during a day, with a total of
1,473 active unique users for the month. With respect to
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between their joining and leaving the system).

the overall stability of the platform, for the same month
of January 2013, we saw a total of 1,303 installs, 61
user uninstalls and 21 users who disabled reporting while
continuing to run Dasu.

Next, we analyze how the duration of experiments is
limited by client session times. Session time is defined
as the elapsed time between it joining the network and
subsequently leaving it. The distribution of clients’
session times partially determines the maximum length
of the measurement tasks that can be “safely” assigned
to Dasu clients. Figure 5 shows the complementary
cumulative distribution function of session times for the
studied period. The distribution is clearly heavy-tailed,
with a median session time for Dasu clients of 178
minutes or ≈ 3 hours.

Given an average session time, the fraction of tasks
that are able to complete depends on the duration of the
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Figure 6: Task time distribution for completed tasks by Dasu
clients. The median task successfully completes in < 5 minutes.
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Figure 8: Distribution of experiment probe submission for
clients. Over 55% are launched < 1sec. after being scheduled.

task – a function of the number of actual measurements
and the load at the client. Figure 6 shows the distribution
of task completion times for all experiments completed
by Dasu peers over a 3-week period. All experiments
during this period were done in the context of the case
study on IXP mapping (Sec. 5), were an experiment
task consists of a set of traceroutes issued by clients to
discover potential peerings. The figure shows that the
median task is able to successfully complete in less than
5 minutes. The plot also shows that nearly all tasks are
able to complete successfully in the face of churn, with
70% of tasks finishing in less than 12 minutes.

4.3 Controlling Experimentation Load

To minimize Dasu’s impact on host application per-
formance and to ensure that user interactions do not
interfere with scheduled measurements, Dasu enforces
pre-defined limits on the number of probes executed
per unit time and schedules measurements during low
utilization periods. We evaluate the impact of one of
these restrictions (on bandwidth utilization) on experi-
ment execution by determining the portion of scheduled
measurements delayed.

Figure 7 shows a CDF of the fraction of probes
delayed by clients due to different bandwidth utilization
constraints (60%, 70% and 80%), taken from a random
subset of clients over a two-week period. The distribu-
tion shows, for instance, that capping at a download uti-
lization of 80%, every scheduled probe can be launched
immediately for 85% of the peers, and that for 98% of
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Figure 9: Request arrival times at the target server.
Approximately 80% of requests arrive within 300 ms.

the peers less than 20% of the probes would require
any delay. In contrast, a smaller fraction of probes
(60%) experience no delay when an 80% utilization limit
is imposed on the upload direction. This is expected,
since broadband users are often allocated lower upload
bandwidth than download.

Fig. 8 shows the queueing time of probes assigned
to Dasu clients for a given experiment over a 1-week
period. The figure shows that over 55% of the probes
are launched in less than a second after being scheduled.

4.4 Client Synchronization

To evaluate the granularity of Dasu’s fine-grain syn-
chronization capabilities, we run an experiment where
Dasu clients were instructed to simultaneously launch an
HTTP request to an instrumented web server. For a span
of five minutes, approximately 30 clients were recruited
to cooperate in the experiment. Following Ramamurthy
et al. [34], as clients joined the experiment they were
instructed to measure their latency to the target server
as well as to the Coordination Server and to report back
their findings.

At the end of the five minutes, clients were scheduled
to launch their measurements (having adjusted each
request based on their measured latencies) while we
logged the arrival times of each incoming HTTP request
at the target server. We repeated this experiment 10
times. Figure 9 shows the mean arrival time of each
request with a crowd size of 31 clients. About 80% of the
requests arrive within 300ms of each other, and 91% of
the requests arrive within 1s of each other. This result is
on par with the synchronization of 100s of milliseconds
reported by Ramamurthy et al. [34]

Variations in the arrival times of the top 20% of
requests are due to queuing delays in broadband net-
works [16] and errors in estimating the latency between
clients and the coordinator server.

5 Case Studies
In this section, we present three case studies that il-
lustrate the unique perspective our edge-based platform
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Figure 10: CCDF of fraction of Dasu-PL path hops that can
be directly measured using IP Options probes. 17% of paths
reply to probes at each hop, meaning that we can determine the
complete reverse path.

brings to Internet measurement and serve as examples of
experiments made possible using Dasu.

5.1 Extending Earlier Experiments: Routing Asym-
metry

Routing asymmetry can impact the results of measure-
ment tools such as traceroute. For instance, estimates of
delay between hosts are subject to errors if the forward
and reverse path differ. We extend the work by He et
al. [21], comparing routing asymmetry for research and
commercial networks, by examining the paths between
stub (Dasu) and research (PlanetLab) networks.

Ideally, one would like to control the hosts at both
ends of a path to determine the forward and reverse
paths between them, and have both endpoints probe the
path concurrently to minimize the impact of factors such
as network load or time-of-day on routing decisions.
The Reverse Traceroute system [24] provides a useful
approach to determine the reverse path even when one
controls only one of the end points. The approach,
however, is not always effective as it cannot probe
reverse paths in networks where routers do not reply to
IP Options probes.

A number of features of Dasu make it possible to
conduct an accurate analysis of path asymmetry between
nodes located in stub networks vs. research networks
including the ability to schedule experiments and to syn-
chronize the launching of measurements across nodes.

We find that for ≈28% of the paths tested between
Dasu clients and PlanetLab nodes (out of 8,046) reverse
traceroute would be forced to make an incorrect sym-
metry assumption because a segment of the reverse path
transits at least one AS that does not appear on the for-
ward path and that does not respond to IP Options probes.
Figure 10 shows that only 17% of the paths between
Dasu and PlanetLab nodes respond to IP Options probes
at every hop, this in contrast to the over 40% of paths
between PlanetLab nodes reported in [24].

To study routing asymmetry between pairs of Dasu-
PlanetLab (Dasu-PL) and PlanetLab-PlanetLab (PL-PL)
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Figure 11: CDFs of AS-level asymmetry in Dasu-PL and
PL-PL paths; ≈60% of Dasu-PL paths show some degree of
asymmetry, vs. 48% of PL-PL paths.

nodes, we launched probes across 8,046 paths between
Dasu clients and PlanetLab nodes, and across 10,067
paths between two PlanetLab nodes. To ensure accurate
measures of routing asymmetry we had hosts at both
endpoints probe the path concurrently.

We measure routing asymmetry by following the
methodology described in [21]. This method maps hops
in the forward path to those of the reverse path (either
at the link-level or AS-level) and assigns a value of 0
if the hops are identical and a value of 1 if they are
different. Through dynamic programming, it then selects
the mappings for each path that results in the minimal
distance. The minimal composite dissimilarity between
a forward and reverse path is referred to as the Absolute
Asymmetry (AA), while the length-based Normalized
Asymmetry (NA) is defined as AA normalized by the
length of the round-trip path.

To compare the asymmetry in the AS-level paths
between the two sets of paths (i.e., Dasu-PL and PL-PL),
figures 11a and 11b show the cumulative distributions
of the AS-level AA and NA metrics, respectively. It
can be observed that the Dasu-PL paths not only have a
higher percentage of asymmetric routes, but also display
a higher magnitude of asymmetry than the PL-PL paths.
To compare the two datasets at the link-level, we again
follow the approach described in He et al. [21] and
use their heuristics to determine if two IP addresses
correspond to the interfaces of the same link. These
heuristics consider two IP addresses to belong to the
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Figure 12: CDFs of link-level normalized asymmetry using
different heuristics for IP to link mapping. Link-level NA is
much lower for PL-PL paths than Dasu-PL paths.

same point-to-point link if they belong to the same
/30, /24, /16, or AS. For each of the four heuristics,
Figures 12a and 12b show the cumulative distributions
of the resulting NA metric for the PL-PL and Dasu-PL
paths, respectively. As noted in [21], the first (/30) and
last (AS) heuristics provide the upper and lower bounds,
on the observed Internet routing asymmetry at the link
level. While figures 11a and 11b show that the two sets
of paths exhibit differences in routing asymmetry at the
AS-level, figures 12a and 12b show these differences
are significantly more pronounced at the link-level but
depend greatly on the heuristics used.

5.2 Questioning Existing Experiments: Inferring
AS-level Connectivity

The model of the Internet as a hierarchically-structured
or “tiered” network of networks is changing [14, 18, 26].
The emergence of new types of networks (e.g., content
providers, web hosting companies, CDNs) and their
resulting demands on the Internet have induced changes
in the patterns of interdomain connections; however,
the precise degree and nature of these changes remains
poorly understood.

Internet exchange Points (IXPs) are an important part
of the rapidly developing Internet ecosystem because
they facilitate the changes, enabling direct connections
between member ASes. A recent study of a large
European IXP has shown that some of the largest IXPs
(e.g., DEC-IX and AMS-IX) handle traffic volumes that
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Table 4: Prefix-based peering at Amsterdam Internet Exchange (AMS-IX) between two ASes. Columns show the hour, local time.
Legend: ‘�’ probes crossed IXP; ‘x’ probes did not cross IXP; ’-’ no probes.

are comparable to those carried by some of the largest
global ISPs and support peering fabrics consisting of
more than 60% of all possible peerings among their
400-500 member ASes [2]. However, despite their
importance, there exists little to no publicly available
information about who is peering with whom nor about
the nature of these peerings.

These changes in the network’s structure demand
changes to how we have traditionally conducted exper-
iments. For instance to question the standard assumption
of homogeneity that has been made when inferring AS-
level connectivity at IXPs [4, 22, 44] – where a single
traceroute between two ASes members of an IXP is
sufficient to declare that these ASes are, as a whole,
connected in the AS graph by a peer-peer link – we
require an endemic population of vantage points that
allows for finer-grained measurements.

Dasu provides an ideal platform to examine the va-
lidity of such assumptions. Its widespread and diverse
user base provides vantage points in multiple prefixes
within the same AS which allows us to identify prefix-
specific features that could not be identified from a single
location in the network. Additionally, Dasu’s near-
continuous availability of vantage points allows us to
study temporal effects that are critical for the observed
kind of peering. Lastly, conducting this kind of targeted
experiments involving specific prefixes in specific ASes
at particular IXPs relies critically on the programmability
of Dasu.

To evaluate the validity of this homogeneity assump-
tion, we set up an experiment to launch multiple tracer-
oute probes, between the same pair of member ASes of
a given IXP, from vantage points located inside different
prefixes of the source AS and at different hours of the
day. We found that about 15% of the peering links
that Dasu discovered violated the assumed homogeneity
condition. Depending on the prefixes, the probes either
crossed the given IXP or were sent instead via one of
the source AS’s upstream providers.7 Table 4 shows a
concrete example of such fine-grained peering observed
between two ASes at AMS-IX. By probing for peerings
between AS1 and AS2 repeatedly from different prefixes
in the ASes and separating the probes by the peers’ local
time, we obtained a view of these well-covered peerings
throughout the day. For each data point in the table we
corroborated the result across multiple traceroute probes

7The various reasons for why certain ASes engage in such non-
traditional peering arrangements is beyond the scope of this paper.

and obtained thus an example of a consistent prefix-
based peering – while probes launched from source
prefix A towards AS2 are never seen crossing the IXP,
probes launched from source prefix B towards AS2 seem
to always go through the IXP.

In short, the discovery of such fine-grained or prefix-
specific peering arrangements is proof that the traditional
view that a single type of AS peering applies uniformly
across all prefixes of an AS is no longer tenable. This
finding has clear implications for measurement and infer-
ence of AS-level connectivity and poses new challenges
and requirements for the platforms and techniques used
for this type of studies.

5.3 Performing Novel Experiments: Evaluating a
Recently-proposed DNS Extension

The edns-client-subnet EDNS0 extension (ECS) was
developed to address the problems raised by the inter-
action between the DNS-based redirection techniques
commonly employed by CDNs and the increasing use
of remote DNS services. CDNs typically map clients
to replicas on the location of the client’s local resolver;
since the resolvers of remote DNS services may be
far from the users, this can result in reduced CDN
performance. ECS aims to improve the quality of CDN
redirections by enabling the DNS resolver to provide
partial client location (i.e. client’s IP prefix) directly to
the CDN’s authoritative DNS server. ECS is currently
being used by a few public DNS services (e.g., Google
DNS) and CDNs (e.g. EdgeCast) and can improve CDN
redirections without modifications to end hosts.

To understand the performance benefits of the pro-
posed ECS extension and capture potential variations
across geographic regions would require access to a large
set of vantage points. These vantage points should be
located in access networks around the world and allow
issuing the necessary interrelated measurement probes.
These are some of the unique features that Dasu offers.

Dasu’s extensibility allows for the creation and ad-
dition of a new probe module to generate and parse
ECS-enabled DNS messages. Additionally, Dasu’s user
base allows us to obtain representative measurement
samples from diverse regions and compare trends across
geographic areas by looking at the relationships between
raw CDN performance, relative proportions of clients
affected by the extension, and the degree of performance
improvement provided by the extension.

This experiment extends the work by Otto et al. [30],
which examined the impact of varying the amount of
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information shared by ECS (i.e. prefix length) and
compared its performance to a client-based solution. We
first obtain CDN redirections to edge servers both with
the ECS extension enabled and disabled. Specifically, we
query Google DNS (8.8.8.8) for an EdgeCast hostname.
To obtain a redirection with ECS disabled, our DNS
probe module sends a query with the ECS option that
specifies 0 bytes of the client’s IP prefix—this effectively
disables the extension’s functionality. For the ECS-
enabled query, we provide the client’s /24 IP prefix.
After obtaining CDN edge server redirections with and
without ECS’s help, we conduct HTTP requests to both
sets of CDN edge servers to measure the application-
level performance in terms of latency to obtain the first
byte of content. For the results from each client, we
compare the median performance with and without ECS
being enabled.

We analyze results from a subset of 1,185 Dasu
clients that conducted this experiment over a 4 month
period from September 12th, 2011 to January 16th,
2012.8 Figure 13 shows the relationship between HTTP
latency with ECS disabled and the performance benefits
(latency savings) with ECS enabled. We classify users by
geographic region; the percentages listed in the legend
indicate the fraction of all sampled clients from that
region. In all regions, sampled clients are located in
a diverse set of networks; even in Oceania—the region
with fewest clients—we cover 9 ISPs in Australia and 4
in New Zealand. The figure plots the subset of samples
in which EDNS impacted HTTP performance.

While we find clients in all these regions that obtained
HTTP performance improvements with ECS enabled,
the samples tend to cluster by region. Although clients
in North America and Western Europe both typically
see HTTP latencies between 20 and 200 ms, the North
American clients generally obtain higher percentage sav-
ings. This would indicate that the CDN’s infrastructure
in North America is relatively dense in comparison to
that of the public DNS service’s deployment. Clients
in Oceania typically have relatively high HTTP laten-
cies between 200 and 1000 ms with ECS disabled—but
commonly realize savings of 70–90% with ECS enabled.
This is likely a result of the specific deployments of
the CDN and DNS services; although there are actually
CDN edge servers near to clients in this region, it appears
that the nearest Google DNS servers are farther away,
resulting in reduced HTTP performance when ECS is
disabled. Finally, we compare the number of clients with
benefits from ECS between Eastern Europe and Oceania;
while clients in Oceania actually comprise a slightly
smaller fraction of the overall sample, the number of

8Each participating client runs the experiment once over that time.
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Figure 13: HTTP latency vs. the performance benefits
provided by ECS, by geographic region. Percentages in the
legend indicate the geographic composition of the dataset.

clients that actually observed better performance is much
higher than for clients in Eastern Europe.

6 Conclusion
We presented Dasu, a measurement experimentation
platform for the Internet’s edge that supports and builds
on broadband characterization as an incentive for adop-
tion. We described Dasu’s design and implementation
and used our current deployment to demonstrate how
participating nodes collectively offer broad network cov-
erage, high availability and fine-grained synchronization
to enable Internet measurement experimentation.

Dasu represents but a single point in a large design
space. We described our rational for our current design
choices, but expect to revisit some of these decisions as
we learn from our own and other experimenters’ use of
the platform.

We presented three case studies that demonstrate
Dasu’s capabilities and illustrate the unique perspective
it brings to Internet measurement. As part of ongoing
work, we are exploring the use of node availability
prediction for experimentation, approaches to ensure
the integrity of experimental results, and allowing
fine-grained control of experiments by end users.

The Dasu client is open source and available for
download from http://azureus.sourceforge.
net/plugin_details.php?plugin=dasu.
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