ACTIVE I/O STREAMS FOR
HETEROGENEOUS HIGH PERFORMANCE
COMPUTING

FABIAN E. BUSTAMANTE AND KARSTEN SCHWAN

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
E-mail: {fabianb, schwan}@cc.gatech.edu

We are concerned with the attainment of high performance in I/O on distributed,
heterogeneous hardware. Our approach is to combine a program’s data retrieval
and storage actions with operations executed on the resulting active I/0 streams.
Performance improvements are attained by exploitation of information about these
operations and by runtime changes to their behavior and placement. In this fash-
ion, active I/O can adjust to static system properties derived from the heteroge-
neous nature of resources and can respond to dynamic changes in system’s condi-
tions, while reducing the total bandwidth needs and/or the end-to-end latencies of
1/0O actions.

1 Introduction

The high performance computing community has identified I/O as a key lim-
iting factor in the performance of future parallel and distributed systems.
This I/0 bottleneck arises from several trends in both technology and applica-
tions. For instance, there is an increasing speed mismatch between processing
units and storage devices, which is only exacerbated by the use of multiple
processors operating simultaneously in parallel machines. Furthermore, new
classes of applications like multimedia, collaborative visualizations of large
data sets, and computational solutions to Grand Challenge problems, are im-
posing steadily increasing demands on 1/0. Finally, the attainment of high
I/O performance is additionally complicated by the heterogeneous nature of
many target platforms, the dynamically varying demands on resources, and
the run-time variations in resource availability. The dynamically varying de-
mands on resources are due to applications’ data dependency and/or users’
dynamic behaviors, while the run-time variations in resource availability are a
consequence of failures, resource additions or removals, and most importantly,
contention for shared resources.

The wide recognition of this problem can be seen in the growing number of
large-scale research efforts addressing high performance 1/O (see ! for an ex-
tensive list). We contribute to such research with the introduction of adaptive

Activel O: Proceedings of Parallel Computing ’99 1

active 1/0 streams. Applications I/O streams are made active through the
assoclation of application-specific or system-level operators to them. These
operators are logically invoked by accessing the associated streams. The re-
sulting active I/O streams permit us to exploit available computational re-
sources and whenever possible and beneficial, to move computation toward
the data sources and across the I/O Bottleneck. The ability to change, at
runtime, these operations’ behaviors and of their placement help us deal with
dynamic variations in resource demands and availabilities.

This paper introduces active I/O streams and describes the design and im-
plementation of Adios, a library for active /O targeting parallel /distributed,
heterogeneous computing platforms. Experimental evaluations of the active
I/0 concept and its realization are performed in the context of the Distributed
Laboratories (DL) project? at the Georgia Institute of Technology.

2 Abstractions, System Architecture, and Implementation

This section briefly defines active I/O, presents some examples of its use, and
describes the abstractions supported by the Adios I/O library, its architecture,
and implementation. Performance results appear in Section 3.

Active I/0. By active I/O streams we refer to application-specific or
system-level functionality associated with application I/O streams. This func-
tionality is embodied in what we term streamlets and is implicitly invoked by
accesses to the associated streams.

Examples of useful activities associated with streams include data-based
filtering, conversion of data formats, adaptive prefetching, and adaptive
declustering?.

Many high-performance applications *° work with large multi-
dimensional datasets representing chemical concentration in the atmosphere
or astronomical readings by different instruments. These applications rarely
need the entire data set but perform data-dependent filtering to extract those
items they are interested on. Although doing such application-specific filter-
ing through active I/O streams does not reduce disk 1/0, it may result in
substantially less network traffic.

When data is exported into files or shared between cooperating programs,
formats must be chosen for the data’s representation. At the lowest level, this
may involve choosing appropriate machine-specific or portable binary data
formats. At the application level, this involves choosing record-based data
representations most likely to be efficient for the programs that share data.
In either case, active I/O can help by applying streamlets that implement
data transformations ‘in place’.

Activel O: Proceedings of Parallel Computing ’99 2

Weissman © proposes a scheme for application-specific remote file access.
A Smart File Object (SFO) is user-level code intended to mitigate network
performance problems through application-specific prefetching that can adapt
based on application and network information. SFOs can be naturally imple-
mented as streamlets in our active I/O streams.

As a final example of the use of activity, consider file declustering in a
heterogeneous environment. The appropriate distribution of file data across
storage nodes can be improved by considering the heterogeneity of such nodes
and of network links connecting them, as well as the dynamic variation in
resource availability across the data path. Activity could be used for declus-
tering of data based on runtime-determined weights.

Abstractions. As depicted in Figure 1, Adios models an application’s
I/O as a directed network comprised of high-level streams originating at
sources, arriving at sinks, and routed through a number of intermediate ver-
tices. Each stream is a sequence of self-describing application-specific data
units, such as complex data structures containing chemical concentration lev-
els in an atmospheric model. Source and sink vertices may be application pro-
grams, or they may be devices such as disks, cameras, or satellites. Streamlets
can be assigned for execution to sources, sinks, and/or intermediate vertices.
By acting on the data units composing the stream, streamlets may modifying
the stream’s characteristics.

Source Sreamlet Snk

Q==

Figure 1. Streams and streamlets

Streamlets are registered with the I/O system at runtime and are subse-
quently attached to sets of one or more streams. The attachment of streamlets
to I/O streams implicitly creates one or more additional streams (the stream-
lets’ “output”) which can then be accessed via read/write operations.

Adaptive I/O Streams. By managing /0 streams at runtime, it is also
possible to cope with dynamic changes in resource availability and user needs” .
The stream adaptations considered in our work exploit (1) the dynamic pa-
rameterization and/or specialization of streamlets that reduce/increase their
execution times, while degrading/improving the fidelity or resolution of the
results they produce, and (2) the migration of streamlets over the datapath in
order to reduce a stream’s composite bandwidth requirements or to adjust the
computational /communication loads imposed by streams on the underlying

Activel O: Proceedings of Parallel Computing ’99 3

hardware to match the current resource availability.

The metrics used to evaluate and drive runtime stream adaptation in
real-time or media applications typically concern total throughput or end-
to-end latency”. Our work on I/O utilizes, among other metrics, a derived
characteristic of a streamlet that we have found useful for both the initial
allocation and the dynamic placement of streamlets. This metric, called sprox,
benefit from proximity to source, indicates the potential benefit of having the
streamlet placed closer to the source of data. Intuitively, there i1s a clear
benefit in placing a streamlet that filters out the incoming messages as close
to the source(s) as possible (and one that expands them as close to to the
sink(s) as possible) in order to improve bandwidth utilization and/or end-to-
end latency. Sprox tries to quantify this benefit as a weight function of the
incoming and outgoing streams’ data rates.

Adios Architecture and Implementation. Active I/O is realized in
the Adios system. Adios high level design is depicted in Figure 2. Adios
logically consists of a Directory Service, Client-Side Servers, Storage Servers,
and Intermediate Servers.

The Directory Service acts as the contact point for all Adios components
and the manager of files and stream metadata for the applications. Client-
Side, Storage, and Intermediate Servers bind streamlets to their corresponding
streams and perform resource monitoring and management functions.

% Sorage Inlamed\a(
- -
\nle(‘mediate

sorage \nleﬂmd\al / Client-Side
Server
Intermediatd /
Server
Storage Intermediat Client-Sde
g (==

\\\& .

Figure 2. Adios architecture

Applications are linked with the Adios runtime libraries that translate
their requests into lower level requests handled by Adios components.

Activel O: Proceedings of Parallel Computing ’99 4

Table 1. Response time to a client application’s request

Streamlet location | Response time (sec.)
Part of application 62.8136
Streamlet at client 67.4798
Streamlet at server 49.4747

3 Experimental Results

The Importance of Activity in I/0. The following experiment validates the
performance benefits derived from the association of activity with I/O streams
and the potential advantages of adaptability. We measure the response time
experienced by a visualization client requiring only a subset of the applica-
tion’s total data. An Adios operator performing the necessary data filtering is
compared to a situation in which Adios and its filtering ability are not present.

In the experiment, a single server is connected to a single client via a
2-hop 10Mbps Ethernet link, and the client visualizes approximately 50% of
the total (41.06 MB) data. The resulting performance differences are shown
in Table 1.

Notice that, once the streamlet has been attached to the stream, the
application can proceed as normal while the streamlet does the filtering on its
behalf. This programmability improvement comes at a reduced cost, as can
be seen by contrasting the first and second rows of Table 1.

Since activity i1s not associated with any particular device but with
streams, we are able to dynamically change the placement of the filter stream-
let. This application-specific filtering does not reduced disk I/O overhead but
may result in substantially less network traffic. The resulting performance
benefits are significant as can be seen by comparing the response times for
both cases, when the streamlet is placed at the client or at server side (sec-
ond and third row in Table 1). Since Adios currently uses runtime linking
to migrate streamlets, however, adaptations will experience certain delays be-
fore they become effective. This delay was 20 milliseconds for the 10.7 KB
streamlet used in this experiment.

Active I/O Streams for weight-based declustering. One way in
which parallel /O libraries address the I/O bottleneck is to aggregate multiple
nodes with attached storage devices into one logical storage device. In our
environment, the appropriate distribution of file data across such nodes must
consider the heterogeneity of storage nodes and network links as well as the
dynamic variation in resource availability for nodes and links. Consequently,
the Adios library uses runtime-determined weights to decluster files across

Activel O: Proceedings of Parallel Computing ’99 5

Table 2. End-to-end bandwidths (in MBps) to I/O nodes

1/0 Node End-to-End Disk Network
Read | Write | Read | Write | Read | Write
lanai 0.155 0.156 1.65 3.85 0.164 0.164

micronesia | 0.156 | 0.156 2.96 13.65 | 0.164 | 0.164
bimini 0.039 | 0.111 2.41 3.06 0.041 | 0.164
etna 0.156 | 0.156 1.43 2.93 0.164 | 0.164

Table 3. Effect of Weight-based declustering based on end-to-end bandwidths

Weight Bandwidth (MBps)
lanai | micronesia | bimini | etna | Read Write
1 1 1 1 1.607 1.081
3 3 2 3 1.574 1.164
4 4 1 4 2.247 1.007

nodes; what we have termed weight-based declustering.

The effective bandwidths of heterogeneous storage nodes available in our
lab are shown in Table 2. These bandwidths were determined by performing
remote blocking reads and writes on a file in blocks of 8 KB.

From these measurements, it is clear that data must be declustered across
storage engines based on the effective storage bandwidth. This is an example
of useful parameterization of streamlets that route data. Comparisons of the
base case of ‘equal treatment’ of storage engines to their unequal treatment
with respect to bandwidth are depicted in Table 3.

From these experiments, it is clear that declustering files over a heteroge-
neous set of I/O nodes based on the nodes’ performance characteristics can
result in significant performance benefits. Several open issues remain concern-
ing the appropriate assignment of weights to file components, including the
fact that clients located on different nodes may experience different network
connectivities to the same storage nodes. This implies that different clients
sharing a single file may wish to use different weights for the file. However,
the dynamic adaptability of other associated streamlets could cope with many
of these situations.

4 Related Work

The potential performance benefits of moving computation across the 1/0
bottleneck and closer to the data has being recognized in a number of different
areas including active disks, active networks, and file systems.

Activel O: Proceedings of Parallel Computing ’99 6

Active networks ® provide a mechanism for running application code at the
network routers and switches. Similarly, active disks %1% make possible to
assign such functionality to empowered disk drives. In our work, activities are
associated with applications’ I/O data streams instead of a particular device.
Once attached to their streams, the assignment of activities to specific “hosts”
can be changed dynamically, adapting to the dynamic variation of resources
demands and availabilities.

The Bridge file system '? implements parallel interleaved files on the BBN
Butterfly shared memory machine. One of the most innovative aspects of
Bridge is its ‘tool’ interface, which allows application to create tool processes
on the storage nodes on which the segments of a parallel file have been placed.
Both Bridge and Adios allow the user to move functionality across the 1/0
bottleneck and towards the data. However, Adios provides an interface at
a higher-level of abstraction than Bridge’s tools, deals with heterogeneity,
and makes use of dynamic adaptation to cope with the dynamically changing
environments to which is targeted.

The dynamic placement and relocation of streamlets is a restricted type
of code mobility. Code mobility raises a number of security issues and our

work relies on solutions to some of those issues as proposed by projects like
13,14

5 Conclusions and Future Work

In this paper we have introduced our ideas on active I/0 streams and their
runtime adaptation to deal with dynamically changing resource availability
and with the distribution and heterogeneity of resources. Activity is sup-
ported through the association of application-specific/system-level operators
with parallel/distributed T/O streams at runtime. Adaptation includes the
dynamic variation of I/O streams’ activities in terms of their assignments to
execution sites and the precise actions performed by those computations.

We have presented our proposed programming model for active 1/0
streams, examples of useful activities associated with streams, and the results
of our initial experimentations that validate the performance and programma-
bility benefits of such ideas.

References

1. David Kotz. Parallel I/O Archive. Dartmouth College, ninth edition,
February 1997. http://www.cs.dartmouth.edu/pario.

2. Beth Plale, Volker Elling, Greg Eisenhauer, Karsten Schwan, Davis King,
and Vernard Martin. Realizing distributed computational laboratories.

Activel O: Proceedings of Parallel Computing ’99 7

10.

11.

12.

13.

14.

to appear in The International Journal of Parallel and Distributed Sys-
tems and Networks.

Kenneth Salem and Hector Garcia-Molina. Disk striping. In Proceedings
of the IEEE 1986 Conference on Data Engineering, pages 336-342, 1986.
John F. Karpovich, James C. French, and Andrew S. Grimshaw. High
performance access to radion astronomy data; a case study. In Pro-
ceedings of teh 7th International Working Conference on Scientific and
Statistical Database Management, September 1994.

Thomas P. Kindler, Karsten Schwan, Dilma Silva, Mary Trauner, and
Fred Alyea. A parallel spectral model for atmospheric transport pro-
cesses. Concurrency: Practice and Ezperience, 8(9):639-666, November
1996.

Jon B. Weissman. Smart file objects: A remote file access paradigm. In
IOPADS’99, pages 89-97, Atlanta, GA, May 1999.

Daniela Rosu, Karsten Schwan, and Sudhakar Yalamanchili. Fara - a
framework for adaptive resource allocation in complex real-time systems.
In Proceedings of the jth IEEE Real-Time Technology and Applications
Symposium (RTAS), Denver, CO, June 1998.

David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.
Wetherall, and Gary J. Minden. A survey of active network research.
IEEE Communications Magazine, 35(1):80-86, January 1997.

Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active disks: Program-
ming model, algorithms and evaluation. In FEight International Confer-
ence on Architectural Support fo Programming Languages and Operating
Systems, pages 81-91, San Jose, CA, October 1998.

Erik Riedel, Garth Gibson, and Christos Faloutsos. Active storage for
large-scale data mining and multimedia. In Proceedings of the 24th
VLDBL Conference, August 1998.

Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. A case
for intelligent disk (IDISKs). 27(3), 1998.

Peter Dibble, Michael Scott, and Carla Ellis. Bridge: A high-performance
file system for parallel processors. In Proceedings of the Eighth Interna-
tional Conference on Distributed Computer Systems, pages 154-161, June
1988.

George C. Necula and Peter Lee. Safe kernel extensions without run-time
checking. In Proceedings of the Second Symposium on Operating System
Design and Implementation, Seattle, WA, October 1996.

Rober Wahbe, Steven Lucco, and Thomas Anderson. Efficient software-
based fault isolation. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles, pages 203-216, December 1993.

Activel O: Proceedings of Parallel Computing ’99

