
Event Services for High Performance Computing

Greg Eisenhauer Fabi´an E. Bustamante Karsten Schwan
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332, USA

feisen,fabianb,schwang@cc.gatech.edu

Abstract

The Internet and the Grid are changing the face of
high performance computing. Rather than tightly-coupled
SPMD-style components running in a single cluster, on
a parallel machine, or even on the Internet programmed
in MPI, applications are evolving into sets of collaborat-
ing elements scattered across diverse computational ele-
ments. These collaborating components may run on dif-
ferent operating systems and hardware platforms and may
be written by different organizations in different languages.
Complete “applications” are constructed by assembling
these components in a plug-and-play fashion. This new
vision for high performance computing demands features
and characteristics not easily provided by traditional high-
performance communications middleware. In response to
these needs, we have developed ECho, a high-performance
event-delivery middleware that meets the new demands of
the Grid environment. ECho provides efficient binary trans-
mission of event data with unique features that support
data-type discovery and enterprise-scale application evo-
lution. We present measurements detailing ECho's perfor-
mance to show that ECho significantly outperforms other
systems intended to provide this functionality and provides
throughput and latency comparable to the most efficient
middleware infrastructures available.

1. Introduction

Wide area distributed computing has been a strong fo-
cus of research in high performance computing. This has
resulted in the development of software infrastructures like
PVM, MPI, and Globus, and in the creation of the National
Machine Room and the Grid by DOE and NCSA/Alliance
researchers. Increasingly, research focus in this domain
has turned towards component architectures [1] which fa-
cilitate the development of complex applications by allow-
ing the creation of generic reusable components and by

easing independent component development. Some of the
earliest requirements for component architectures in high-
performance computing were derived from systems that at-
tach scientific visualizations to running computations, but
continuing research has generalized such models to include
the ability to flexibly link general purpose computational el-
ements as well [18, 19, 1]. Component-based software de-
velopment has been proposed by the software engineering
community over the last decade [20, 23] and its advantages
have been widely recognized in industry, resulting in the
development of systems such as Enterprise Java Beans, Mi-
crosoft's Component Object Model and its distributed ex-
tension (DCOM), and the developing specification of the
CORBA Component Model (CCM) in OMG's CORBA ver-
sion 3.0.

A common technique for integrating the different com-
ponents of a system isevent-basedinvocation, also known
as implicit or reactive invocation, which has historical
roots in systems based on actors [12], daemons, and
packet-switched networks. Event-based integration is at-
tractive as it strongly supports software reuse and facili-
tates system evolution [9, 8]. In bringing the benefits of
component-based software development to the domain of
high-performance computing, our work does not seek to
create a complete component framework. Instead, we have
concentrated on providing the integration mechanism that
will allow the community to obtain the advantages of such
architectures while maintaining high performance.

This paper discusses the results of our work, an efficient
event-based middleware, ECho, through which systems of
distributed collaborating components can be constructed.
Several attributes of ECho distinguish it from related work:

� High performance sharing of distributed data –
ECho transports distributed data with performance
similar to that achieved by systems like MPI. This level
of performance is required if the integration mecha-
nism is to support the normally large data flows that
are part of high performance applications. For a dis-

tributed visualization, for example, this level of per-
formance enables end-users to interact via meaning-
ful data sets generated at runtime by the computational
models being employed.

This paper demonstrates ECho's high performance
across heterogeneous hardware platforms, using net-
worked machines resident at Georgia Tech. In pre-
vious work, we have used ECho in Internet-wide
collaborations[14], and we have demonstrated its abil-
ity to represent both the control and the data events
occurring in distributed computational workbenches.

� Dynamic data provision and consumption –ECho
supports the publish/subscribe model of communica-
tion. Thus new components can be introduced into
an ECho-based system simply by registering them to
the right set of events in the system, without need
for re-compilation or re-linking. In addition, compo-
nents could be dynamically replaced without affect-
ing other components in the system, facilitating sys-
tem evolution. Event-based publish/subscribe models,
like the one offered by ECho, have become increas-
ingly popular and their utility within a variety of other
environments, including Internet- and E-commerce
applications[24], extensible systems[3], collaborative
systems[11], distributed virtual reality[16] and mobile
systems[27], has been well-established. ECho differs
from such ongoing or past research in its efficient sup-
port for event transmission across heterogeneous ma-
chines, derived from its ability to recognize and trans-
late at runtime, user-defined event formats. While sys-
tems like InfoBus[17] and Schooner[13] have demon-
strated the utility of making type information avail-
able to middleware, neither have attempted to attain
the high performance achieved by ECho.

� Dynamic type extension and reflection –One of the
major features differentiating component-based appli-
cations from their tightly-coupled kin is the relative
lack ofa priori knowledge about data flows. In order to
be able to “drop” a component into place in a system,
the component must be able to discover the contents of
the data flows it is to operate upon. Even the parts of an
application that were designed to work together face
difficulty maintaininga priori knowledge in a wide
area Grid environment. As different pieces of an ap-
plication are changed or upgraded over time it may be
necessary to modify their data flows, invalidating other
pieces that rely on previous knowledge and/or requir-
ing their simultaneous upgrade. Because of these diffi-
culties, component-based systems typically provide an
integration mechanism that offer some degree oftype
extensionandreflection. Those terms, borrowed from
object-oriented systems, express the ability to transpar-

ently extend existing data types while preserving the
validity of code using the old type (type extension) and
the ability for third parties to discover the contents of
and operate upon a data type withouta priori knowl-
edge (reflection). One of the most important contribu-
tions of ECho is that it provides these features without
compromising performance, as measurements in this
paper will demonstrate.

ECho-based applications can also interoperate with
CORBA- or Java-based components, like those used in
the Diesel Combustion Collaboratory or the Hydrology
workbench. Thus, end users can continuing to employ
tools like the Java-based VisAD data visualization system
or the CORBA-based collaboration services in Deepview,
but gain high performance for data movement (in contrast
to event rates attained for CORBA- or Java-based event
systems[2, 25]). Interoperability with Java- and CORBA-
based systems will be demonstrated elsewhere.

ECho has been available since October 1997, and our
group has used it for various large-scale, ongoing develop-
ment and research efforts. Among such efforts, of princi-
pal interest to the high performance community are the at-
mospheric and hydrology applications mentioned earlier as
well as two additional ones now being developed by our
group: (1) a distributed materials design workbench, where
multiple end users interact witheach other and with com-
putational tools in order to design high performance mate-
rials, and (2) a distributed implementation of an NT-Unix-
spanning system for molecular dynamics and/or for crystal
plasticity studies done by collaborators in the departments
of Mechanical Engineering and Physics in Georgia Tech.
Finally, ECho events are one of the key building blocks
of the DARPA-funded InfoSphere Information Technology
Expedition[21].

The remainder of this paper is organized as follows. Sec-
tion 2 describes ECho's basic functionality. Section 3 com-
pares ECho's event delivery performance to that of other
communication systems which offer some form of type ex-
tension and reflection. In particular, we examine the perfor-
mance of a set of middleware systems which might be con-
sidered as alternative candidates for the integration mech-
anism of a component infrastructure, including CORBA
event channels, event distribution via Java's RMI, and an
XML-based communication scheme; comparing the basic
latency of each to that of ECho and using an MPI message
exchange as a baseline for measurement. We also study the
impact of machine heterogeneity on ECho's performance
and explore the effects of its type extension features. Fi-
nally, Section 4 discusses some key areas of future work
and summarizes our conclusions.

2

Process A

Event
Channel

Channel
Event

Event
Channel

Process C

Process B

Figure 1. Computations using Event Chan-
nels for Communication.

2. ECho Functionality

ECho shares semantics common to a class of event de-
livery systems that usechannel-based subscriptions. That
is, anevent channelis the mechanism through which event
sinks and sources are matched. Source clients submit events
to a specific channel and only the sink clients subscribed to
that channel are notified of the event. Channels are essen-
tially entities through which the extent of event propaga-
tion is controlled. The CORBA Event Service[10] is also
channel-based, with channels being distributed objects.

2.1. Efficient Event Propagation

Unlike many CORBA event implementations and other
event services such as Elvin[22], ECho event channels are
not centralized in any way. Instead, channels are light-
weight virtual entities. Figure 1 depicts a set of processes
communicating using event channels. The event channels
are shown as existing in the space between processes, but in
practice they are distributed entities, with bookkeeping data
residing in each process where they are referenced. Chan-
nels arecreatedonce by some process, andopenedany-
where else they are used. The process which creates the
event channel is distinguished, in that it is the contact point
for other processes wishing to use the channel. The channel
ID, which must be used to open the channel, contains the
contact information for the creating process (as well as in-
formation identifying the specific channel). However, event
distribution is not centralized and there are no distinguished
processes during event propagation. Event messages are
always sent directly from an event source to all sinks and
network traffic for individual channels is multiplexed over
shared communications links.

ECho is implemented on top of DataExchange[7] and
PBIO[5], packages developed at Georgia Tech to simplify

connection management and heterogeneous binary data
transfer. As such, it inherits from these packages portabil-
ity to different network transport layers and threads pack-
ages. DataExchange and PBIO operate across the vari-
ous versions of Unix and Windows NT, have been used
over the TCP/IP, UDP, and ATM communication protocols
and across both standard and specialized network links like
ScramNet[26].

In addition to offering interprocess event delivery, ECho
also provides mechanisms for associating threads with
event handlers allowing a form of intra-process communi-
cation. Local and remote sinks may both appear on a chan-
nel, allowing inter- and intra-process communication to be
freely mixed in a manner that is transparent to the event
sender. When sources and sinks are within the same ad-
dress space, an event is delivered by directly placing the
event into the appropriate shared-memory dispatch queue.
While this intra-process delivery can be valuable, this pa-
per concentrates on the aspects of ECho relating to remote
delivery of events.

2.2. Event Types and Typed Channels

One of the differentiating characteristics of ECho is its
support for efficient transmission and handling of fully
typed events. Some event delivery systems leave event
data marshalling to the application. ECho allows types
to be associated with event channels, sinks and sources
and will automatically handle heterogeneous data transfer
issues. Building this functionality into the ECho using
PBIO allows for efficient layering that nearly eliminates
data copies during marshalling and unmarshalling. As oth-
ers have noted[15], careful layering to minimize data copies
is critical to delivering full network bandwidth to higher lev-
els of software abstraction. The layering with PBIO is a
key feature of ECho that makes it suitable for applications
which demand high performance for large amounts of data.

Base Type Handling and Optimization Functionally,
ECho event types are most similar to user defined types
in MPI. The main differences are in expressive power and
implementation. Like MPI's user defined types, ECho
event types describe C-style structures made up of atomic
data types. Both systems support nested structures and
statically-sized arrays. ECho's type systems extends this
to support null-terminated strings and dynamically sized ar-
rays.1

While fully declaring message types to the underlying
communication system gives the system the opportunity to
optimize their transport, MPI implementations typically do

1In the case of dynamically sized arrays, the array size is given by an
integer-typed field in the record. Full information about the types sup-
ported by ECho and PBIO can be found in [5].

3

10000

Data Structure Size

1Kb 100b10Kb100Kb

1000

100

10.0

1.0

.1

m
ill

is
ec

on
ds

Round-trip Latency

Java
CORBA
MPICH
ECho

XML

Figure 2. A comparison of latency in basic
data exchange in event infrastructures

not exploit this opportunity and often transport user defined
types even more slowly than messages directly marshalled
by the application. In contrast, ECho and PBIO achieve
a performance advantage by avoiding XDR, IIOP or other
' wire' representations different than the native representa-
tion of the data type. Instead, ECho and PBIO use a wire
format that is equivalent to the native data representation
(NDR) of the sender. Conversion to the native representa-
tion of the receiver isdone upon receipt withdynamically
generated conversion routines. As the measurements in [6]
show, PBIO ' encode' times do not vary with data size and
'decode' times are much faster than MPI. Because as much
as two-thirds of the latency in a heterogeneous message ex-
change is software conversion overhead[6], PBIO's NDR
approach yields round-trip message latencies as low as 40%
of that of MPI.

Type Extension ECho supports the robust evolution of
sets of programs communicating with events by allowing
variation in data types associated with a single channel. In
particular, an event source may submit an event whose type
is a superset of the event type associated with its channel.
Conversely, an event sink may have a type that is a subset
of the event type associated with its channel. Essentially
this allows a new field to be added to an event at the source
without invalidating existing event receivers. This function-
ality can be extremely valuable when a system evolves be-
cause it means that event contents can be changed without
the need to simultaneously upgrade every component to ac-
commodate the new type. ECho even allows type variation
in intra-process communication, imposing no conversions
when source and sink use identical types but performing
the necessary transformations when source and sink types

Delivered Bandwidth

100b1Kb10Kb100Kb

40

50

30

20

10

0

Data Structure Size

M
b

it
s/

se
c

��

�
�
�
� ECho

MPICH

XML
Java
CORBA

Figure 3. A comparison of delivered band-
width in event infrastructures

differ in content or layout.
The type variation allowed in ECho differs from that sup-

ported by message passing systems and intra-address space
event systems. For example, the Spin event system supports
only statically typed events. Similarly, MPI's user defined
type interfaces do not offer any mechanisms through which
a program can interpret a message withouta priori knowl-
edge of its contents. Additionally, MPI performs strict type
matching on message sends and receives, specifically pro-
hibiting the type variation that ECho allows.

In terms of the flexibility offered to applications, ECho's
features most closely resemble the features of systems that
support the marshalling of objects as messages. In these
systems , subclassing and type extension provide support
for robust system evolution that is substantively similar to
that provided by ECho's type variation. However, object-
based marshalling often suffers from prohibitivelypoor per-
formance. ECho's strength is that it maintains the applica-
tion integration advantages of object-based systems while
significantly outperforming them. As the measurements in
the next section will show, ECho also outperforms more tra-
ditional message-passing systems in many circumstances.

3. ECho Performance

Figures 2 and 3 represent the basic performance charac-
teristics of a variety of communication infrastructures that
might be used for event-based communication in high per-
formance applications. The values are of basic event latency
and bandwidth in an environment consisting of a x86-based
PC and a Sun Sparc connected by 100 Mbps Ethernet.2 The

2The Sun machine is an Ultra 30 with a 247 MHz cpu running Solaris 7.
The x86 machine is a 450 MHz Pentium II, also running Solaris 7.

4

infrastructures presented don' t all share the same charac-
teristics and features, a fact that accounts for some of their
performance differences. ECho's strength is that it provides
the important features of these systems while maintaining
the performance achieved by minimal systems like MPICH.

In particular, ECho provides for event type discovery
and dynamic type extension in a manner similar to that of
XML, or that which can be achieved by serializing objects
as events (as in Java RMI). CORBA is also gaining accep-
tance as distributed systems middleware and its Event Ser-
vices provide similar features. This section will examine
ECho's performance characteristics in more detail and con-
trast them with these other infrastructures.

3.1. Breakdown of Costs

Table 1 shows a breakdown of costs involved in the
roundtrip event latency measures of Figure 2. We present
a round-trip times both because they naturally show all the
combinations of send/recv on two different architectures in
a heterogeneous system. The time components labeled “En-
code” represent the span of time between an application
submitting data for transmission and the point at which the
infrastructure invokes the underlying network 'send()' oper-
ation. The “Network Transfer” times are the one-way times
to transmit the encoded data from sending to receiving ma-
chines. The “Decode” times are the time between the end
of the “recv()” operation and the point at which the data is
presented to the application in a usable form. This break-
down is useful for understanding the different costs of the
communication and in particular, how they might change
with different networks or processors.

We have excluded Java RMI from the breakdown in Ta-
ble 1 because it performs its network 'send()' operations
incrementally during the marshalling process. This allows
Java to pipeline the encode and network send operations
making a simple cost breakdown impossible. However, as
a result of this design decision Java RMI requires tens of
thousands of kernel calls to send a 100Kb message, seri-
ously impacting performance.

Additionally, while the round-trip times listed in Table 1
are near the sum of the encode/xmit/decode times, this is not
true for the CORBA numbers. This is because implementa-
tions of the CORBA typed event channel service typically
rely on CORBA's dynamic invocation interface to operate.
In the ORBs we have examined, DII does not function for
intra-address-space invocations. The result of this is that
the CORBA typed event channel must reside in a differ-
ent address space than either the event source or event sink,
adding an extra hop to every event delivery. This could be
considered to be implementation artifact that might be han-
dled differently in future CORBA event implementations.

ECho CORBA
(ORBacus)

MPICH XML

Total Round-Trip 30.6 53.0 80.1 1249
Sparc Encode 0.037 0.74 13.3 176
Network Transfer 13.9 13.9 13.9 182
x86 Decode 1.6 1.6 11.6 276
x86 Encode 0.015 0.64 8.9 124
Network Transfer 13.9 13.9 13.9 182
Sparc Decode 1.2 0.58 15.4 486

Table 1. Cost breakdown for heterogeneous
100Kb event exchange (times are in m illi sec-
onds).

3.1.1 Sending side costs

ECho's most significant performance feature is its use of the
native data format on the sending architecture as its `wire
format' . The effects of this approach are most noticeable
when comparing the “Encode” times for the different com-
munication infrastructures. For example, MPICH uses a
very slow interpreted marshalling procedure for heteroge-
neous communication of MPI user-defined data types. That
this has a significant impact on MPICH performance is ap-
parent in Table 1 which shows MPICH devoting as much as
60% of its round-trip message time to encoding and decod-
ing.

CORBA's IIOP wire format differs from the architec-
tures native data layout in its alignment requirements. As
a result, CORBA must copy all the application data before
sending. In ORBacus, this copy is performed by compile-
time-generated stub code, so it is much faster than the
MPICH approach. However, ECho is significantly faster
because it performs verylittle processing prior to the net-
work send operation.

Using XML as a wire format is obviously a decision
which has a significant performance impact on an event sys-
tem. Table 1 makes clear two of the most significant issues:
the large encode/decode times, and the expanded network
transmission times. The former is a result of the distance be-
tween the ascii representation used by XML and the native
binary data representation. XML encoding costs represent
the processing necessary to convert the data from binary to
string form and to copy the element begin/end blocks into
the output string. Just one end of the encoding time for
XML is several times as expensive as the entire round-trip
message exchange for the other infrastructures. Network
transmission time is also significantly larger for XML be-
cause the ASCII-encoded data (plus the begin/end labels)
can be significantly larger than the equivalent binary rep-
resentation. How much larger depends upon the data, the
size of the field labels and other details in the encoding.
Thus XML-based schemes transmit more data than schemes

5

which rely on binary encoding.

3.2. Receiving side costs

ECho's technique of using the sender's native data for-
mat as a wire format dramatically reduces the event sender's
costs, but it increases the complexity of the receiver's task.
With a fixed wire format like IIOP, the receiver can often
use compile-time generated stub code to perform the wire-
to-native format translation. ECho does not have that op-
tion because the receiver does not havea priori knowledge
of the native data formats of all possible senders. How-
ever, ECho achieves similar efficiency by using dynamic
code generation to create customized format translation rou-
tines on-the-fly. As the “Decode” entries in Table 1 show,
this approach achieves efficiency which is similar to that of
ORBacus, which uses compile-time generated stubs for un-
marshalling, and is significantly better than the interpreted
unmarshalling used by MPICH.

XML necessarily takes a different approach to receiver-
side decoding. Because the `wire' format is a continuous
string, XML is parsed at the receiving end. The Expat XML
parser3 calls handler routines for every data element in the
XML stream. That handler can interpret the element name,
convert the data value from a string to the appropriate bi-
nary type and store it in the appropriate place. This flexibil-
ity makes XML extremely robust to changes in the incom-
ing record. The parser we have employed is also extremely
fast, performing its principal function with pointer manip-
ulations and in-place string modification rather than copy-
ing strings. However, XML still pays a relatively heavily
penalty for requiring string-to-binary conversion on the re-
ceiving side. (We assume that for most high performance
computing functions, data is being sent somewhere for pro-
cessing and that processing requires the event data to be in
other than string form. Thus XML decoding is not just pars-
ing, but also the equivalent of a Cstrtod() or similar
operation to convert the data into native representation.)

3.3. Costs for Homogeneous Exchanges

Because ECho has virtually no sender-side encoding
costs and because itsdynamic code generation achieves
performance similar to that achieved through compile-time
stub generation, ECho tends to outperform other communi-
cation infrastructures. This is particularly apparent in het-
erogeneous message exchanges because the encode/decode
time can play a significant role in overall message costs.

However, ECho's approach also yields performance
gains for transfers between homogeneous systems, as

3A variety of implementations of XML, including both XML genera-
tors and parsers, are available. We have used the fastest known to us at this
time, Expat [4].

ORBacus ECho
send receive send receive

data size side side side side
overhead overhead overhead overhead

100Kb 0.74 0.40 0.037 0.034
10Kb 0.22 0.046 0.037 0.034
1Kb 0.19 0.016 0.037 0.034
100b 0.17 0.010 0.037 0.034

Table 2. Cost breakdown for homogeneous
event exchange (times are in milli seconds).

shown in Table 2. For simplicity, this table concentrates
on the ECho and ORBacus infrastructures. The higher OR-
Bacus costs for large data sizes represent the cost of the re-
quired data copy in converting the IIOP wire format to the
native data representation. ECho requires no such copy.4 As
in the heterogeneous case, ECho does not pre-process data
prior to sending, and because the `wire format' corresponds
to the native data representation, ECho can deliver received
data directly to the application without copying it from the
message buffer. This is not possible with IIOP because of
potential data alignment conflicts between IIOP and the na-
tive data representation.

At common 100Mbps network speeds, these additional
data copy operations are account for a relatively small frac-
tion of the total exchange costs. However, minimizing data
copies is critical to delivering full network bandwidth to
higher levels of software abstraction[15]. As gigabit net-
works and specialized low-latency communications mech-
anisms come into more common use, the additional copy
operations imposed on even homogeneous communications
by fixed wire formats will become a more important limi-
tation on communication speeds, increasing ECho's perfor-
mance advantage.

3.4. Costs for Type Extension

In addition to efficient operation in basic event trans-
fer, ECho supports the creation and evolution of sets of
collaborating programs through event type discovery and
dynamic type extension. ECho events carry format meta-
information, somewhat like an XML-style description of
the message content. This meta-information can be an in-
credibly useful tool in building and deploying enterprise-
level distributed systems because it 1) allows generic com-
ponents to operate upon data about which they have noa
priori knowledge, and 2) allows the evolution and extension
of the basic message formats used by an application with-

4For the smaller data sizes, the extra copy overhead is small compared
to the fixed delivery costs in these systems.

6

message size

1.0

m
ill

is
ec

on
ds

 (
lo

gs
ca

le
)

.01

.1

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��

��
��
��
��
��
��

��
��
��
��
��
��

 100Kb 10Kb 1Kb 100b

Mismatched fields

Matched fields

��
��
��
��

��
��
��
��

Heterogeneous Receive Times

Figure 4. Receiver-side decoding costs with
and without an unexpected field – heteroge-
neous case.

out requiring simultaneous upgrades to all application com-
ponents. In other terms, ECho allowsreflectionand type
extension. Both of these are valuable features commonly
associated with object systems.

ECho data type information is represented during trans-
mission withformat tokenswhich can be used to retrieve
full type information. These tokens are small and are in-
cluded in every ECho event transmission as part of the
header information. As such they do not affect performance
significantly.

ECho supports type extension by virtue of doing field
matching between incoming and expected records by name.
Because of this, new fields can be added to events without
disruption because application components which don' t ex-
pect the new fields will simply ignore them.

Most systems which support reflection and type exten-
sion in messaging, such as systems which use XML as a
wire format or which marshal objects as messages, suffer
prohibitively poor performance compared to systems such
as MPICH and CORBA which have no such support. There-
fore, it is interesting to examine the effect of exploiting
these features upon ECho performance. In particular, we
measure the performance effect of type extension by intro-
ducing an unexpected field into the incoming message and
measuring the change in receiver-side processing.

Figures 4 and 5 present receive-side processing costs for
an exchange of data with an unexpected field. These fig-
ures show values measured on the Sparc side of hetero-
geneous and homogeneous exchanges, respectively, using
ECho's dynamic code generation facilities to create conver-
sion routines. It's clear from Figure 4 that the extra field has
no effect upon the receive-side performance. Transmitting
would have added slightly to the network transmission time,
but otherwise the support of type extension adds no cost to
this exchange.

Figure 5 shows the effect of the presence of an unex-

message size

m
ill

is
e
co

n
d
s

(l
o
g
sc

a
le

)

.01

.1

1.0

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��

 100Kb 10Kb 1Kb 100b
��
��
��

��
��
��

Mismatched fields

Matching fields

Homogeneous Receive Times

Figure 5. Receiver-side decoding costs with
and without an unexpected field – homoge-
neous case.

pected field in the homogeneous case. Here, the overhead is
potentially significant because the homogeneous case nor-
mally imposes no conversion overhead in ECho. The pres-
ence of the unexpected field creates a layout mismatch be-
tween the wire and native record formats and as a result the
conversion routine must relocate the fields. As the figure
shows, the resulting overhead is non-negligible, but not as
high as exists in the heterogeneous case. For smaller record
sizes, most of the cost of receiving data is actually caused by
the overhead of the kernelselect() call. The difference
between the overheads for matching and extra field cases is
roughly comparable to the cost ofmemcpy() operation for
the same amount of data.

The results shown in Figure 5 are actually based upon a
worst-case assumption, where an unexpected field appears
before all expected fields in the record, causing field offset
mismatches in all expected fields. In general, the overhead
imposed by a mismatch varies proportionally with the ex-
tent of the mismatch. An evolving application might exploit
this feature of ECho by adding any additional at the end of
existing record formats. This would minimize the overhead
caused to application components which have not been up-
dated.

4. Conclusions and Future Work

This paper examined ECho, an event-based middleware
designed to meet the demands of a new generation of Grid
applications. In particular, we considered the communi-
cation/integration demands of component-based systems in
a high-performance computing environment and how they
might be different from those of more tightly-coupled ap-
plications. ECho meets those requirements by provid-
ing a publish-subscribe communication model that supports
type extension and type discovery. While object-based and

7

XML-based systems provide similar functionality, the mea-
surements in Section 3 show that ECho does it with signifi-
cantly better performance, both in terms of delivered band-
width and end-to-end latency. The measurements also show
that ECho matches and, in most cases, outperforms MPICH
in both metrics supporting our assertion that ECho is suit-
able for use in the main data flows of Grid applications.

Future work will examine aspects of ECho which are be-
yond the scope of this paper. Those features includederived
event channels, which support for source-side event filter-
ing and remote data transformation, andproto-channels, a
mechanism through which receivers can themselves con-
trol and customize source-side event generation. We will
also expand upon ECho's ties to other systems, including
CORBA and Java.

References

[1] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,
L. McInnes, S. Parker, and B. Smolinski. Toward a
common component architecture for high performance
scientific computing. InProceedings of the 8th High
Performance Distributed Computing (HPDC'99), 1999.
http://www.acl.lanl.gov/cca.

[2] Y. Ashlad, B. E. Martin, M. Marathe, and C. Le. Asyn-
chronous notifications among distributed objects. InPro-
ceedings of the Conference on Object-Oriented Technolo-
gies and Systems. Usenix Association, June 1996.

[3] C. Chambers, S. J. Eggers, J. Auslander, M. Philipose,
M. Mock, and P. Pardyak. Automatic dynamic compilation
support for event dispatching in extensible systems. InPro-
ceedings of the Workshop on Compiler Support for Systems
Software (WCSSS'96). ACM, February 1996.

[4] J. Clark. expat - XML Parser Toolkit.
http://www.jclark.com/xml/expat.html.

[5] G. Eisenhauer. Portable self-describing binary data streams.
Technical Report GIT-CC-94-45, College of Computing,
Georgia Institute of Technology, 1994. (anon. ftp from
ftp.cc.gatech.edu).

[6] G. Eisenhauer and L. K. Daley. Fast heterogeneous binary
data interchange. submitted to 9th Heterogeneous Comput-
ing Workshop (HCW 2000), May 2000.

[7] G. Eisenhauer, B. Schroeder, and K. Schwan. Dataex-
change: High performance communication in distributed
laboratories. Journal of Parallel Computing, 24(12-13),
November 1998.

[8] D. Garlan and D. Notkin. Formalizing design spaces: Im-
plicit invocation mechanisms. InVDM'91: Formal Soft-
ware Development Methods, pages 31–44. Springer-Verlag,
LNCS 551, October 1991.

[9] D. Garlan and M. Shaw. An introduction to software archi-
tecture. In V. Ambriola and G. Tortora, editors,Advances in
Software Engineering and Knowledge Engineering, Volume
I. World Scientific Publishing Company, New Jersey, 1993.

[10] O. M. Group. CORBAservices: Common Object Services
Specification, chapter 4. OMG, 1997. http://www.omg.org.

[11] Habanero. NCSA and University of Illinois at Urbana.
http://notme.ncsa.uiuc.edu/SDG/Software/Habanero.

[12] C. Hewitt. Planner: A language for proving theorems in
robots. InProceedings of the First International Join Con-
ference in Artificial Intelligence, 1969.

[13] P. T. Homer and R. D. Schlichting. Configuring scientific
applications in a heterogeneous distributed system.IEEE
Distirbuted Systems Engineering Journal, 1996 1996.

[14] C. Isert and K. Schwan. ACDS: Adapting computational
data streams for high performance. InProceedings of In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), May 2000.

[15] M. Lauria, S. Pakin, and A. A. Chien. Efficient layering
for high speed communication: Fast messages 2.x. InPro-
ceedings of the 7th High Performance Distributed Comput-
ing (HPDC7), July 1998.

[16] B. MacIntyre and S. Feiner. Language-level support for ex-
ploratory programming of distributed virtual environments.
In Proceedings of Symposium on User Interface Software
and Technology (UIST'96), pages 83–95, November 1996.

[17] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The informa-
tion bus - an architecture for extensible distributed systems.
In 14th ACM Symposium on Operating Systems Principles,
pages 58–68, Asheville, NC, December 1993.

[18] C. M. Pancerella, L. A. Rahn, and C. L. Yang. The diesel
combustion collaboratory: Combustion researchers collabo-
rating over the internet. InProceedings of SC 99, Novem-
ber 13-19 1999. http://www.sc99.org/proceedings/papers/
pancerel.pdf.

[19] B. Parvin, J. Taylor, G. Cong, M. O' Keefe, and M.-H.
Barcellos-Hoff. Deepview: A channel for distributed mi-
croscopy and informatics. InProceedings of SC 99, Novem-
ber 13-19 1999. http://www.sc99.org/proceedings/papers/
parvin.pdf.

[20] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture.ACM SIGSOFT Software Engineering
Notes, 17(4), October 1992.

[21] C. Pu. Infosphere – smart delivery of fresh information.
http://www.cse.ogi.edu/sysl/projects/infosphere//

[22] B. Segall and D. Arnold. Elvin has left the building: A
publish/subscribe notification service with quenching. In
Proceedings of the AUUG (Australian users group for Unix
and Open Systems) 1997 Conference, September 1997.

[23] M. Shaw and D. Garlan.Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall, 1996.

[24] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller,
B. Mukherjee, D. Sturman, and M. Ward. Gryphon: An in-
formation flow based approach to message brokering. InIn-
ternational Symposium on Software Reliability Engineering
'98 Fast Abstrac, 1998.

[25] Sun Microsystems. The jini[tm] distributed event specifi-
cation, version 1.0.1. Technical report, Sun Microsystems,
Nov. 1999. http://www.sun.com/jini/specs/event101.html.

[26] Systran Federal Corporation. Scramnet networks.
http://www.systran.com/real-tim.htm.

[27] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and
B. Peet. Concordia: An infrastructure for collaborating mo-
bile agents. InProceedings of the First International Work-
shop on Mobile Agents 97 (MA'97), April 1997.

8

