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Abstract

New trends in high-performance software development such as tool- and component-

based approaches have increased the need for 
exible and high-performance communi-

cation systems. High-performance computing applications are being integrated with a

variety of software tools to allow on-line remote data visualization, enable real-time inter-

action with remote sensors and instruments, and provide novel environments for human

collaboration. There has also been a growing interest among high-performance researchers

in component-based approaches, in an attempt to facilitate software evolution and pro-

mote software reuse. When trying to reap the well-known bene�ts of these approaches,

the question of what communications infrastructure should be used to link the various

components arises.

In this context, 
exibility and high-performance seem to be incompatible goals. Tradi-

tional HPC-style communication libraries, such as MPI, o�er good performance, but are

not intended for loosely-coupled systems. Object- and metadata-based approaches like

XML o�er the needed plug-and-play 
exibility, but with signi�cantly lower performance.

We observe that the 
exibility and baseline performance of data exchange systems are

strongly determined by their wire formats, or by how they represent data for transmission



in the heterogeneous environments. After examining the performance implications of

using a number of di�erent wire formats, we propose an alternative approach for 
exible

high-performance data exchange, Native Data Representation, and evaluate its current

implementation in the Portable Binary I/O library.

Index Terms: High-performance, distributed computing, communication, wire for-

mat.

1 Introduction

New trends in high-performance software development such as tool- and component-based ap-

proaches have increased the need for 
exible and high-performance communication systems.

High-performance computing applications are being integrated with a variety of software tools

to allow on-line remote data visualization [1], enable real-time interaction with remote sensors

and instruments, and provide novel environments for human collaboration [2]. There is also

a growing interest among high-performance researchers in component-based approaches, in an

attempt to facilitate software evolution and promote software reuse [3, 4, 5]. When trying

to reap the well-known bene�ts of these approaches, the question of what communications

infrastructure should be used to link the various components arises.

In this context, 
exibility and high-performance seem to be incompatible goals. Traditional

HPC-style communications systems like MPI o�er the required high performance, but rely on

the assumption that communicating parties have a priori agreements on the basic contents

of the messages being exchanged. This assumption severely restricts 
exibility and makes

application maintenance and evolution increasingly onerous. The need for 
exibility has led

designers to adopt techniques like the use of serialized objects as messages (Java's RMI [6]) or

to rely on meta-data representations such as XML [7]. These alternatives, however, have high

marshalling and communications costs in comparison to more traditional approaches [8, 9].

We observe that the 
exibility and baseline performance of a data exchange system are

strongly determined by its wire format, or how it represents data for transmission in a hetero-

geneous environment. Upon examining the 
exibility and performance implications of using a

2



number of di�erent wire formats, we propose an alternative approach that we call Native Data

Representation.

The idea behind Native Data Representation (NDR) is straightforward. We avoid the use

of a common wire format by adopting a \receiver-makes-right" approach, where the sender

transmits the data in its own native data format and it is up to the receiver to do any necessary

conversion. To reduce the possible costs of conversion, any translation on the receiver's side is

performed by custom routines created through dynamic code generation (DCG). By eliminating

the common wire format, the up and down translations required by approaches like XDR

are potentially avoided. Furthermore, when sender and receiver use the same native data

representation, such as in exchanges between homogeneous architectures, this approach allows

received data to be used directly from the message bu�er eliminating high copy overheads [10,

11]. When sender's and receiver's formats di�er, NDR's DCG-based conversions have eÆciency

similar to that of systems that rely on a priori agreements to make use of compile- or link-time

stub generation. However, because NDR's conversion routines are dynamically generated at

data-exchange initialization, our approach o�ers considerably greater 
exibility. The meta-data

required to implement this approach and the runtime 
exibility a�orded by DCG together allow

us to o�er plug-and-play communication similar to that provided by XML or object marshalling

without compromising performance.

NDR is not a new communication paradigm on par with message passing or RPC, but a low-

level approach to communication which can be used to implement these (and other) paradigms

more eÆciently.

NDR has been implemented in a new version of the Portable Binary I/O library [12]. Exper-

imentation with a variety of realistic applications shows that the NDR-based approach obtains

the required 
exibility at no signi�cant cost to performance. On the contrary, the results pre-

sented in Section 4 demonstrate improvements of up to 3 orders of magnitude in the sender

encoding time, 1 order of magnitude on the receiver side, and a 45% reduction in data roundtrip

time, when compared to the exchange of data with known high performance communication

systems such as MPI.

The remainder of this paper is organized as follows: in Section 2 we review related ap-
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proaches to communication and comment on their performance and 
exibility. Section 3

presents the Native Data Representation approach and its implementation in the Portable

Binary I/O (PBIO) communication library. We compare the performance and 
exibility of

PBIO with that of alternative communication systems in Section 4. After examining the di�er-

ent costs involved in the communication of binary data on heterogeneous platforms, we evaluate

the relative costs of MPI, XML and CORBA's IIOP communications in exchanging the same

sets of messages, and compare them to those of PBIO. Next, the performance e�ects of dy-

namic type discovery and extension are compared for PBIO vs. XML-based systems. Finally,

we show microbenchmark results that demonstrate the overheads incurred by the creation and

maintenance of the meta-information needed by PBIO, as well as the additional costs incurred

for DCG at the time a new data exchange is initiated. We present our conclusion and discuss

some directions for future work in Section 5.

2 Related Work

In this section we review work on communication approaches, with a focus on their support for

high-performance and 
exibility, and relate them to NDR.

Not surprisingly, eÆciency has been the single most important goal of high-performance

communication packages such a PVM [13], Nexus [14] and MPI [15]. Most of these packages

support message exchanges in which the communicating applications \pack" and \unpack" mes-

sages, building and decoding them �eld by �eld [13, 14]. By manually building their messages,

applications have full control over message contents while ensuring optimized, compiled pack

and unpack operations. However, relegating these tasks to the communicating applications

means that the communicating components must agree on the format of messages. In addition,

the semantics of application-side pack/unpack operations generally imply a costly data copy to

or from message bu�ers [16, 10].

Other packages, such as MPI, support the creation of user-de�ned data types for messages

and �elds and provide some marshalling and unmarshalling support for them. Although this

provides some level of 
exibility, MPI does not have any mechanisms for run-time discovery of
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data types of unknown messages, and any variation in message content invalidates communica-

tion. In addition, while internal marshalling could avoid the aforementioned cost of data copies

and o�er more 
exible semantics in matching senders' and receivers' �elds, most implementa-

tions fail to capitalize on these opportunities. MPI's type-matching rules, for example, require

strict agreement on the content of messages, and most implementations marshal user-de�ned

datatypes via mechanisms that amount to interpreted versions of �eld-by-�eld packing.

In summary, the operational norm for high-performance communication systems is for all

parties to a communication to have an a priori agreement on the format of messages exchanged.

The consequent need to simultaneously update all system components in order to change mes-

sage formats is a signi�cant impediment to system integration, deployment and evolution.

New trends in high-performance software development, such as tool- and component-based

approaches [3, 4, 5], have increased the need for more 
exible communication systems. This

need has promoted the use of object-oriented systems and meta-data representations. Although

object technology provides some amount of plug-and-play interoperability through subclassing

and re
ection, this typically comes at the price of communication eÆciency. For example,

CORBA-based object systems use IIOP [17] as a wire format. IIOP attempts to reduce mar-

shalling overhead by adopting a \receiver-makes-right" approach with respect to byte order (the

actual byte order used in a message is speci�ed by a header �eld). This additional 
exibility

in the wire format allows CORBA to avoid unnecessary byte-swapping in message exchanges

between homogeneous systems, but it does not eliminate the need for data copying by both

sender and receiver. At issue here is the contiguity of atomic data elements in structured data

representations. In IIOP, XDR and other wire formats, atomic data elements are contiguous,

without intervening space or padding between elements. In contrast, the native, in-memory

representations of those structures in the actual applications must contain appropriate padding

to ensure that the alignment constraints of the architecture are met. On the sending side,

the contiguity of the wire format means that data must be copied into a contiguous bu�er for

transmission. On the receiving side, the contiguity requirement means that data cannot be

referenced directly out of the receive bu�er, but must be copied to a di�erent location with

appropriate alignment for each element. Therefore, the way in which marshalling is abstracted
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in these systems prevents copies from being eliminated even when analysis might show them

unnecessary.

While all of the communication systems above rely on some form of �xed wire format for

communication, most XML-based systems take a di�erent approach to communication 
exibil-

ity. Rather than transmitting data in binary form, they rely on ASCII-text as a wire format

with each record represented in textual form with header and trailer information identifying

each �eld. This allows applications to communicate without previous knowledge of each other.

However, XML encoding and decoding costs are substantially higher than those of other formats

due to the conversion of data from binary to ASCII and vice versa. In addition, XML-based

approaches have substantially higher network transmission costs because the ASCII-encoded

record is often substantially larger than the binary original. The amount of expansion caused

by XML depends upon tag sizes, data contents, the use of arrays and attributes and a variety

of other factors. We have found that an expansion factor of 6-8 above the size of binary data

is not unusual.

In this paper we propose and evaluate an alternative wire format approach, Native Data

Representation, with combined goals of 
exibility and high performance. NDR increases appli-

cation 
exibility by allowing receivers to make run-time decisions on the use and processing of

incoming records without a priori knowledge of their formats. NDR achieves its goal of high

performance by reducing copy and conversion overheads at senders and avoiding the potential

cost of potentially complex format conversions on the receiving end through the use of dynamic

code generation.

3 Native Data Representation

This section describes the details of Native Data Representation and its implementation in the

PBIO communication library. A comparative evaluation of NDR and other approaches appears

in Section 4.

Instead of imposing a single network standard, NDR allows the sender to use its own native

format. Data is placed \on the wire" in the sender's internal format and it is up to the receiver
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typedef struct small_record {

int ivalue;

double dvalue;

int iarray[5];

} small_record, *small_record_ptr;

IOField small_record_fld[] =

{

{"ivalue", "integer", sizeof(int), IOOffset(small_record_ptr,ivalue)},

{"dvalue", "float", sizeof(double), IOOffset(small_record_ptr,dvalue)},

{"iarray", "integer[5]", sizeof(int), IOOffset(small_record_ptr,iarray)},

{NULL, NULL, 0, 0}

};

Figure 1: An example of message format declaration. IOOffset() is a simple macro that

calculates the o�set of a �eld from the beginning of the record.
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to do any necessary conversion. More concretely, PBIO puts data on the wire in exactly the

sender's memory representation, including gaps that re
ect the senders alignment requirements.

By avoiding the use of a lowest-common-denominator format, it maximizes the possibility that

program-internal data can be transmitted and used directly without costly copy operations.

For this to be possible, however, senders and receivers must provide format descriptions of the

records they wish to exchange, including the names, types, sizes and positions of the �elds in

the records. Figure 1 shows an example of this format declaration.

On the receiver's end, the format of the incoming record is compared with the format

expected by the process, with correspondence between incoming and expected records' �elds

established by �eld name (with no weight placed on the �eld's size or its position in the record).

If there are discrepancies in size or placement of a �eld, then appropriate conversion routines

perform the necessary translations. In this way, a receiver program can read the binary infor-

mation produced by a sender despite potential di�erences in: byte ordering, sizes of data types

(e.g. long and int), and record layout by compilers.

PBIO's implementation of NDR separates the detailed format descriptions from the actual

messages exchanged. Format descriptions are registered with a format service and messages are

pre�xed with a small format token that identi�es them. From this format service, receivers can

request (and cache) previously unseen format descriptions. Thus, format operations are one-

time events associated with the registration of a new format description or the �rst occurrence

of a message of a particular format.

In the following subsections we describe the marshalling and unmarshalling of PBIO's mes-

sages and provide some details on the use of record format descriptions.

3.1 Marshalling and Unmarshalling

Minimizing the costs of conversions to and from wire formats is a well known problem in

network communication [18, 19]. Traditional marshalling/unmarshalling can be a signi�cant

overhead [20, 21], and tools like the Universal Stub Compiler (USC) [19] attempt to minimize

this cost with compile-time solutions. Although optimization considerations similar to those
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addressed by USC apply in our case, the dynamic nature of the marshalling problem in PBIO,

where the layout and even the complete �eld contents of the incoming record are unknown until

run-time, rules out such static solutions.

3.1.1 Marshalling

Because PBIO's approach to marshalling involves sending data largely as it appears in memory

on the sender's side, marshalling is computationally inexpensive. Messages are pre�xed with

a small (32-128 bits1) format token that identi�es the format of the message. If the message

format contains variable length elements (strings or dynamically sized arrays), a 32-bit length

element is also added at the head of the message. Message components that do not have string

or dynamic sub�elds (such as the entire message of Figure 1) are not subject to any processing

during marshalling. They are already in the \right" wire format. However, components with

those elements contain pointers by de�nition. The PBIO marshalling process copies those

components to temporary memory (to preserve the original) and converts the pointers into

o�sets inside the message. The end-result of PBIO's marshalling is a vector of bu�ers which

together constitute an encoded message. Those bu�ers can be written on the wire directly by

PBIO or transmitted via another mechanism to their destination.

3.1.2 Unmarshalling

The NDR approach can reduce or even eliminate the sender-side processing required for data

transmission. In addition, NDR increases application 
exibility by allowing receivers to make

run-time decisions about the use and processing of incoming messages without any previous

knowledge of their formats. These bene�ts, however, come at the cost of potentially complex

format conversions on the receiving end. Because the format of incoming records is principally

de�ned by the native formats of the writers, and because PBIO has no a priori knowledge of

the native formats of the communicating parties, the precise nature of this format conversion

1The exact size depends upon the particular way PBIO is used and the con�guration of format servers. This

topic is covered in more detail in Section 3.2.2.
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must be determined at run-time. While in homogeneous exchanges most of these costs can be

avoided, unmarshalling in heterogeneous exchanges can be expensive as it may require byte-

order conversions (byte-swapping), movement of data from one o�set to another, or even a

change in the basic size of the data type (for example, from a 4-byte integer to an 8-byte

integer).

In order to reduce the cost of heterogeneous exchanges, PBIO employs to dynamic code

generation for unmarshalling. For each incoming wire format, PBIO creates a specialized

native subroutine that converts incoming records into the receiver's format. These native

conversion subroutines are cached, based on the format token of the incoming record, and

reused in subsequent conversions allowing the amortization of the costs associated with code

generation. The run-time generation of conversion subroutines is essentially a more dynamic

approach to the problems addressed by tools like USC[19]. A more detail discussion of the

unmarshalling costs and the contribution of dynamic code generation is provided in Section 4.3.

3.2 Dealing with Formats

PBIO's implementation of NDR separates the detailed format descriptions from the actual

messages exchanged. Format descriptions are registered with a format service and messages

are pre�xed with a small format token that identi�es them. Record format descriptions in PBIO

include the names, types, sizes and positions of the �elds in the messages exchanged. Figure 1

shows a C language declaration that builds a format description for use in PBIO. Because

the size and byte o�set of each �eld may change depending upon the machine architecture

and compiler in use, those values are captured using the C sizeof() built-in and the PBIO

IOOffset() macro.

The format description in Figure 1 may look somewhat obscure, but it could easily be

generated from the C typedef. In fact, both the typedef and the PBIO �eld list declaration

can be generated from a higher level speci�cation, such as a CORBA IDL struct declaration or

even an XML schema (see Figure 2).

Di�erent forms of speci�cation are appropriate for di�erent applications. The form of Fig-
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interface small f

struct small record f

long value;

double dvalue;

long< 5 > iarray;

g;

g

(a) CORBA IDL speci�cation

<schema>

<element name="ivalue" type="integer"/>

<element name="dvalue" type="double"/>

<element name="iarray" type="integer"

minOccurs=5 maxOccurs=5/>

</schema>

(b) XML Schema speci�cation

Figure 2: Alternative message structure de�nitions.

ure 1 is easiest for integrating PBIO-based messaging into an existing C application, but forms

such as those in Figure 2 may be more convenient for new applications. Regardless of the

form of the speci�cation, PBIO's capabilities are de�ned by the types of messages that it can

represent and marshal, namely C-style structures whose �elds may be atomic data types, sub-

structures of those types, null-terminated strings, and statically- or dynamically-sized arrays of

these elements. In the case of dynamically-sized arrays, the array is represented by a pointer to

a variable-sized memory block whose length is given by an integer-typed element in the record.2

Dynamic Formats. Because PBIO formats roughly correspond to a description of a C-style

struct, the formats used by individual applications tend to be relatively static (as are those

structures), and the �eld lists of locally-used records are known at compile time. However,

unlike many marshalling and communication mechanisms, PBIO does not depend in any way

upon compile-time stub generation or any other compile-time techniques for its eÆciency or

normal operation. Field lists (of the form of Figure 1) supplied at run-time are all that PBIO

requires to build formats for marshalling and unmarshalling. These highly-dynamic capabilities

of PBIO are useful in creating plug-and-play components that operate upon data that may not

be speci�ed until run-time. These more highly-dynamic features of PBIO are also exploited

2PBIO does not attempt to represent recursively-de�ned pointer-based data structures such as trees or linked

lists.
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by an XML interface that \dehydrates" XML into a PBIO message for transmission and \re-

hydrates" it at the receiver based on a run-time speci�ed schema described in detail in [22].

3.2.1 Format Description Representation and Size

One factor a�ecting the cost of dealing with formats is the actual size of the format information

to be exchanged. Unlike the records they describe, PBIO format information is represented

on the wire by a well-de�ned structure that includes some general format information of �xed

size (� 16 bytes), the format name, and information for each of the �elds in the format's �eld

list. The information for each �eld consists of a �xed size portion (currently 12 bytes) and a

variable size portion (the �eld name and base type). A general expression3 for the approximate

wire-size of format information is:

size � 16 + strlen(formatname) +
X

f�F ields

(12 + strlen(fname) + strlen(ftype))

The �rst two bytes of the format information give its overall length and are always in network

byte order. One of the next bytes speci�es the byte order of the remaining information in the

format. PBIO format operations that involve the transfer of format descriptions always use

this wire format for their exchanges. It is important to note that such operations are associated

only with one-time events, such as a new format description registration or the �rst occurrence

of a message of a particular format.

3.2.2 Format Servers and Format Caches

The format service in PBIO is provided by servers that issue format tokens when formats

are registered with them. For identical formats (same �elds, �eld layout, format name, and

machine representation characteristics), a format server issues identical format tokens. These

3The constants in this expression are an artifact of the exact details of format representation, largely irrelevant

to this discussion. The expression itself is included only to provide a rough idea of the characteristics of format

communication. A full analysis of the one-time costs associated with various format service schemes is beyond

the bounds of this paper.
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PBIO Comm Link

Application

FC

FS

Application

FS

FC

Figure 3: Single PBIO connection showing per-connection format servers (FS) and caches (FC).

tokens can be presented to format servers in order to retrieve complete format information.

Format caches are repositories of format information, indexed by format tokens, that exist on

both the encoding and decoding clients to optimize communication.

The details of format communication in PBIO depend to some extent upon the circum-

stances of its use. Two principal modes are:

� Connected PBIO: where PBIO performs marshalling/unmarshalling and directly con-

trols transmission on the network, and

� Non-connected PBIO: where PBIO performs marshalling/unmarshalling, but is not in

direct control of network transmission.

The �rst case is the simplest one because PBIO can ensure that the format information

for a given record is sent across the wire before the �rst record of that format. In this case,

format information is issued (by the sender) and cached (by the receiver) on a per-connection

basis. Because formats are always interpreted in the context of a particular connection, format

tokens in this mode are simple 32-bit integers where the token with value i is the i-th format

transmitted on that connection. Since the sender always transmits format information �rst,

essentially pre-loading the receiver's format cache, there are no requests for it. This situation

is depicted in Figure 3.

The case of non-connected PBIO is more interesting. Here a message (along with its format

token) is sent by non-PBIO means to a third party. Because PBIO does not control trans-

mission, it cannot pre-load the format cache of the receiver. Instead, the third-party receiver
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Application
Decoding

Unknown (to PBIO) Comm. Mechanism

FC

message

Format Server

Application
Encoding

FC

message

Format registration/
Format token

Format token/
Format information

Figure 4: Simple format service arrangement in non-connected PBIO. A single PBIO format

server is shared by all communicating applications. Each application has its own format cache

(FC) to minimize communication with the server.

Application
Decoding

FC

Unknown (to PBIO) Comm. Mechanism

message

FS FS

Application
Encoding

message

FC
Format token
Format registration/

Figure 5: The \self-service" format arrangement in non-connected PBIO. Each application acts

as a format server (FS) for its own formats and maintains a cache (FC) for formats registered

elsewhere.

must be able to use the format token to retrieve the full format information. This is essen-

tially a naming problem, and there are a number of possible implementation options. In the

simplest one, depicted in Figure 4, a format server, located at a well-known address, serves all

communicating parties.

The format service can be supported by a number of alternative client/server con�gura-

tions. It can be provided by a particular server or, at the other end of the spectrum, each

communicating client can act as the format server for its own formats, as shown in Figure 5.

The self-server arrangement is similar to the connected PBIO arrangement of Figure 3, ex-

cept that there is one server and one cache per process instead of one per connection. Because

the communication mechanism is unknown to PBIO and because format tokens are only mean-
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ingful when presented to the issuing server, the format token must contain enough information

for the client to identify the correct server. Communication with the issuing format server is

generally not done via the channels which propagate the message, though PBIO can be made

to use one-to-one third-party communication links for format communication through special

callbacks.

These two schemes, and variants between the extremes, have di�erent performance charac-

teristics with respect to communication startup costs. For example, the single format server

approach maximizes the bene�ts of caching because identical formats always have identical

format tokens, to the bene�t of long-running clients. However, format registration for a new

client always requires a communication with the central format server. In the scheme where

each client is its own format server, format registration requires no network communication and

is therefore quite cheap. However, caches will be less well utilized because two clients of the

same machine architecture and transmitting the same records will have non-identical format

tokens. Because a full analysis of the tradeo�s in this performance space is outside the bounds

of this paper, we concentrate largely on evaluating PBIO performance in steady-state message

exchange.

4 Evaluation

This section compares the performance and 
exibility of PBIO's implementation of NDR with

that of systems like MPI, CORBA, and XML-based ones. None of systems compared share

PBIO's stated goals of supporting both 
exible and eÆcient communication. MPI is chosen to

represent traditional HPC communication middleware that depends upon a priori knowledge

and sacri�ces 
exibility for eÆciency. XML-based mechanisms are examined because they em-

phasize plug-and-play 
exibility in communication without considering performance. CORBA

is chosen as a relatively eÆcient representative of the object-based systems becoming popular in

distributed high-performance computing. Some object-based notions of communication, such

as exchanging marshalled objects, can potentially o�er communication 
exibility as good or

better than PBIO's. However, current implementations of object marshalling are too ineÆcient
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Figure 6: Cost breakdown for heterogeneous sparc/x86 roundtrip message exchange.

for serious consideration in high performance communication. Because of this, our measure-

ments of CORBA in this context are only for one-way invocations where the data is carried

as a single CORBA struct parameter. In this style of communication, CORBA o�ers little


exibility (no re
ection or subclassing are possible).

4.1 Analysis of Costs in Heterogeneous Data Exchange

Before analyzing the various packages in detail, it is useful to examine the costs of a binary

data exchange in heterogeneous environments. As a baseline for this discussion, we use the

MPICH [23] implementation of MPI, as it provides a challenging comparison. Complete details

of why this is the case will be explained in the following sections, but in summary:

� The heterogeneous exchange maximizes PBIO's relative costs. (In a homogeneous ex-

change, PBIO imposes virtually no cost above network transport times.)

� The costs of the other approaches do not vary signi�cantly between heterogeneous and

homogeneous exchanges.

� Though MPI lacks any of PBIO's 
exibility in matching incoming data with the receiver's

expectations, MPICH is representative of the best performing approaches discussed here.
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typedef struct KSdata1_Record {

int Cnstatv;

double Cstatev[12];

int Cnprops;

double Cprops[110];

int Cndi[4];

int Cnshr;

int Cnpt;

double Cdtime;

double Ctime[2];

int Cntens;

double Cdfgrd0[3][373];

double Cdfgrd1[3][3];

double Cstress[106];

double Cddsdde[106][106];

} KSdata1;

Figure 7: Format of the 100KB message used in the evaluation. This format was extracted

from a mechanical engineering simulation of the e�ects of micro-structural changes on solid-

body behavior. The smaller messages are subsets of this structure.

Figure 6 represents a breakdown of the costs of an MPI message round-trip between a

x86-based PC and a Sun Sparc connected by 100 Mbps Ethernet.4

The format of the 100KB messages exchanged is described in Figure 7 as a C structure

declaration. The data structure is part of a mechanical engineering simulation of the e�ects of

micro-structural changes on solid-body behavior. The smaller messages (10K, 1KB and 100B)

are subsets of the original data structure.

4The Sun machine is an Ultra 30 with a 247 MHz cpu running Solaris 7. The x86 machine is a 450 MHz

Pentium II, also running Solaris 7.
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The time components labeled Encode represent the time span between the point at which

the application invokes MPI send() and its eventual call to write data on a socket. The Decode

component is the time span between the recv() call returning and the point at which the data

is in a form usable by the application. This delineation allows us to focus on the encode/decode

costs involved in binary data exchange. That these costs are signi�cant is clear from the �gure,

where they typically represent 66% of the total cost of the exchange.

Figure 6 shows the cost breakdown for various sized messages (using examples drawn from

a mechanical engineering application), but in practice, message times depend upon many vari-

ables. Of these measurements, the network cost is largely determined by basic operating system

characteristics that a�ect raw end-to-end TCP/IP performance and (aside from the message

size implications of various encoding mechanisms) is beyond the control of the application or

the communication middleware. Of course, di�erent encoding strategies in use by the commu-

nication middleware may change the number of raw bytes transmitted over the network and

therefore the network time. Those di�erences are generally negligible, but where they are not

(such as in the case of XML), they can have a signi�cant impact upon the relative costs of a

message exchange.

The next subsections will examine the relative costs of PBIO, MPI, CORBA5, and an

XML-based system in exchanging the same sets of messages. We �rst compare the sending-

and receiving-side communication costs for all the alternatives evaluated. Then we discuss

our use of dynamic-code-generation to reduce unmarshalling costs and evaluate the resulting

performance improvements. We conclude the section with an analysis of the performance e�ects

of 
exibility in PBIO.

4.2 Sending Side Cost

We �rst compare the sending-side data encoding times on the Sun Ultra-30 Sparc for an XML-

based implementation6, MPICH, CORBA, and PBIO. Figure 8 shows the di�erent encoding

5The ORBacus for this evaluation.
6A variety of implementations of XML, including both XML generators and parsers, are available. We have

used the fastest known to us at this time, Expat [24]. We create XML manually with sprintf() for data-to-string
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Figure 8: Send-side encoding times.

times in milliseconds. An examination of this plot yields two conclusions:

� XML wire formats are inappropriate. The �gure shows dramatic di�erences in the

amount of encoding necessary for the transmission of data (which is assumed to exist in

binary format prior to transmission). The XML costs represent the processing necessary

to convert the data from binary to string form and to copy the element begin/end blocks

into the output string. The result is an encoding time that is at least an order of magnitude

higher than other systems. Just one end of the encoding time for XML is several times as

expensive as the entire MPI round-trip message exchange (as shown in Figure 6). Further,

the message represented in the ASCII-based XML format is signi�cantly larger than in the

conversions and strcpy() for concatenation. (We track the end of the string and use strcpy() rather than use

strcat() because the latter would have to re-locate the end of the string at each call.) Faster XML creation

mechanisms might be possible, but our approach is reasonable and a faster creation mechanism would not

change the overall results of our analysis for XML. Its relative size (and the resulting large transmission costs)

compared to binary encoding mechanisms largely precludes it from use when performance is a consideration.
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binary-based representations. This gives signi�cantly larger network transmission times

for XML messages, increasing latency and decreasing possible message rates substantially.

� The NDR-approach signi�cantly improves sending-side costs. As is mentioned

in Section 3, we transmit data in the native format of the sender. As a result, no copies

or data conversions are necessary to prepare simple structure data for transmission. So,

while MPICH's costs to prepare for transmission on the Sparc vary from 34�sec for the

100 byte record up to 13 msec for the 100Kb record and CORBA costs are comparable,

PBIO's costs are a 
at 3 �sec.

While these cost savings are signi�cant, they are not unexpected. A basic consequence of

adopting NDR is the reduction of sender processing to the absolute minimum, requiring that

neither byte order or alignment be modi�ed for transmission and therefore avoiding the need for

copying data. On the receiving end, however, adopting this approach translates on relatively

more complicated processing. The next section will examine the costs associated with that

processing and their impact on the communication.

4.3 Receiving Side Costs

Broadly speaking, receiver-side overheads in communication middleware have several compo-

nents:

� byte-order conversion,

� data movement costs, and

� control costs.

Byte order conversion costs are to some extent unavoidable. If the communicating ma-

chines use di�erent byte orders, the translation must be performed somewhere, regardless of

the capabilities of the communications package.7

7We mainly discuss di�erences in byte orders because those are the principal representation di�erences

found in modern machines. Although historically machines have used other integer and 
oating point represen-
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Data movement costs are harder to quantify. If byte-swapping is necessary, data movement

can be performed as part of the process, without incurring signi�cant additional costs. Other-

wise, clever design of the communication middleware can often avoid copying data. However,

packages that de�ne a wire format for transmitted data have a harder time being clever in this

area. One of the basic diÆculties is that the native format for mixed-datatype structures on

most architectures has gaps, unused areas between �elds, inserted by the compiler to satisfy

data alignment requirements. To avoid making assumptions about the alignment requirements

of the machines they run on, most packages use wire formats that are fully packed and have no

gaps. This mismatch forces a data copy operation in situations where a clever communications

system might otherwise have avoided it.

Control costs represent the overhead of iterating through the �elds in the record and decid-

ing what to do next. Packages that require applications to marshal and unmarshal their own

data have the advantage that this process occurs in specially-written compiler-optimized code,

minimizing control costs. Systems such as CORBA, where the marshalling code can conceivably

be pre-generated and compiled based upon static stubs, have a similar advantage. However,

to keep that code simple and portable, such systems uniformly rely on communicating in a

pre-de�ned wire format, therefore incurring the data movement costs described in the previ-

ous paragraph. Additionally, many CORBA IIOP implementations do not actually marshal

data entirely with precompiled stub routines. Because CORBA type-codes tend to drive IIOP

marshalling, many CORBA implementations use interpreted marshalling mechanisms, such as

described by Gokhale and Schmidt [25].

Packages that marshal data themselves typically use an alternative approach to control,

where the marshalling process is controlled by what amounts to a table-driven interpreter.

This interpreter marshals or unmarshals application de�ned data, making data movement and

conversion decisions based upon a description of the structure provided by the application and

its knowledge of the format of the incoming record. This approach to data conversion gives the

tations, the ubiquity of twos-complement and IEEE 
oating representations make the potential disadvantage

of a receiver-makes-right approach (the needed support of N �N di�erent translations given N di�erent repre-

sentations) mainly theoretical.
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Figure 9: Receive side decode times.

package signi�cant 
exibility in reacting to changes in the incoming data and was our initial

choice when implementing NDR.

XML necessarily takes a di�erent approach to receiver-side decoding. Because the \wire

format" is a continuous string, XML is parsed at the receiving end. The Expat XML parser [24]

calls handler routines for every data element in the XML stream. That handler can interpret

the element name, convert the data value from a string to the appropriate binary type and

store it in the appropriate place. This 
exibility makes XML extremely robust to changes in

the incoming record. The parser we employed is quite fast, but XML still pays a relatively

heavy penalty for requiring string-to-binary conversion on the receiving side.

4.3.1 Comparison of Receiver-Side Costs

Figure 9 shows a comparison of receiver-side processing costs on the Sparc for interpreted

converters used by XML, MPICH (via the MPI_Unpack() call), CORBA, and PBIO. In this case,

we use an early PBIO implementation in which a generalized routine walked a data structure to
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convert the data from the incoming format to the native format. XML-receiver's8 conversions

are clearly expensive, typically between one and two orders of decimal magnitude more costly

than our NDR-based converter for this heterogeneous exchange. On an exchange between

homogeneous architectures, PBIO, CORBA and MPI would have substantially lower costs,

while XML's costs would remain unchanged. Our NDR-based converter is highly optimized

and performs considerably better than MPI, in part because MPICH uses a separate bu�er for

the unpacked message rather than reusing the receive bu�er (as is done in PBIO). However,

NDR's receiver-side conversion costs still contribute roughly 20% of the cost of an end-to-end

message exchange. While a portion of this conversion overhead must be attributed to the raw

number of operations involved in performing the data conversion, we believe that a signi�cant

fraction of this overhead is due to control costs in what is, essentially, an interpreter-based

approach.

4.3.2 Optimizing Receiver-Side Costs for PBIO

As previously described, our decision to transmit data in the sender's native format results in

the wire format being unknown to the receiver until run-time. As a result, the nature of the

wire-to-native conversion is also unknown until runtime, and we cannot employ to compile-time

techniques that generate eÆcient and specialized unmarshalling code. However, we can use a

similar approach in a more dynamic way. In particular, PBIO's implementation of NDR makes

use of dynamic code generation to create a customized conversion subroutine for every incoming

record type. These routines are generated by the receiver on the 
y, as soon as the wire format

is known. PBIO dynamic code generation is performed using a Georgia Tech DCG package

(DRISC) that provides a virtual RISC instruction set. Early versions of PBIO used the MIT

Vcode system [26].

The instruction set provided by DRISC is relatively generic, and most instruction generation

calls produce only one or two native machine instructions. Native machine instructions are

generated directly into a memory bu�er and can be executed without reference to an external

8As noted earlier, we used the fastest known to us, Expat [24].
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Record Size Number of time required to

generated instructions generate

100Kb 884 849�s

10Kb 540 732�s

1Kb 308 505�s

100b 156 446�s

Table 1: The generation times for DCG conversion routines for various record sizes. The counts

are for Sparc instructions.

compiler or linker.9

Employing DCG for conversions means that PBIO must bear the cost of generating the code

as well as executing it. Because the format information in PBIO is transmitted only once on

each connection and data tends to be transmitted many times, conversion routine generation is

not normally a signi�cant overhead. The proportional overhead encountered varies signi�cantly

depending upon the internal structure of the record. To understand this variability, consider

the conversion of a record that contains large internal arrays. The conversion code for this case

will consist of a few for loops that process large amounts of data. In comparison, a record of

similar size consisting solely of independent �elds of atomic data types requires custom code

for each �eld.

Dynamic code generation on the receiver happens only once for each message type (when

it �rst arrives). As a result, the overhead imposed by creating the conversion routines is not

typically an important factor in steady-state message exchange and a full analysis of the factors

controlling generation time is beyond the scope of this paper. However, for completeness we

have included in Table 1 the generation times for the Sparc-side conversion routines used in the

x86-to-Sparc exchange for each message size.

For the reader desiring more information on the precise nature of the code that is generated,

we include a small sample subroutine in Figure 10. This particular conversion subroutine

9More details on the nature of PBIO's dynamic code generation can be found in [27].
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converts message data received from an x86 machine into native Sparc data. Figure 1 shows

the structure of the message being exchanged.

Since the record is being sent from an x86 to a Sparc, the \wire" and the receiver native

formats di�er in both byte order and alignment. In particular, the 
oating point value is

aligned on a 4-byte boundary in the x86 format and on an 8-byte boundary on the Sparc.

The subroutine takes two arguments. The �rst argument in register %i0 is a pointer to the

incoming \wire format" record. The second argument in register %i1 is a pointer to the desired

destination, where the converted record is to be written in native Sparc format.

The exact details of the code are interesting in two ways. First, we make use of the SparcV9

Load from Alternate Space instructions, which can perform byteswapping directly as part of

the load operation. Since this is not an instruction that is normally generated by compilers in

any situation, being able to use it directly in this situation is one of the advantages of dynamic

code generation.

Second, from an optimization point of view, the generated code is actually quite poor.

Among other things, it performs two instructions when one would obviously suÆce, and unnec-

essarily generates an extra load/store pair to get the double value into a 
oat register. There are

several reasons for this suboptimal code generation, including the generic nature of the virtual

RISC instruction set used as an intermediate language, the lack of an optimizer to repair it, and

the fact that we have not seriously attempted to make the code generation better. Even when

generating poor code, DCG conversions are a signi�cant improvement over other approaches.

Examining the generated code may also bring to mind another subtlety in generating con-

version routines: data alignment. The alignment of �elds in the incoming record re
ects the

restrictions of the sender. If the receiver has more stringent restrictions, the generated load

instruction may end up referencing a misaligned address, a fatal error on many architectures.

This situation would actually have occured in the example shown above, because the incoming

double array is aligned on a 4-byte boundary and the Sparc requires 8-byte alignment for 8-byte

loads. The dynamic code generator detects the fact that a direct 8-byte load of the double

values would be misaligned and loads the two halves of the incoming doubles with separate

ldswa instructions instead of a single lddfa instruction.

25



start of procedure bookkeeping

save %sp, -360, %sp
byteswap load and store the `ivalue' �eld.

clr %g1
ldswa [ %i0 + %g1 ] #ASI_P_L, %g2
st %g2, [ %i1 ]

byteswap load and store the `dvalue' �eld

mov 4, %g1
ldswa [ %i0 + %g1 ] #ASI_P_L, %g2
mov 8, %g1
ldswa [ %i0 + %g1 ] #ASI_P_L, %g3
st %g3, [ %sp + 0x158 ]
st %g2, [ %sp + 0x15c ]
ldd [ %sp + 0x158 ], %f4
std %f4, [ %i1 + 8 ]

loop to handle `iarray'

save 'incoming' and 'destination' pointers for later restoration

st %i0, [ %sp + 0x160 ]
st %i1, [ %sp + 0x164 ]

make regs i0 and i1 point to start of incoming and destination 
oat arrays

add %i0, 0xc, %i0
add %i1, 0x10, %i1

setup loop counter

mov 5, %g3

loop body.

clr %g1
ldswa [ %i0 + %g1 ] #ASI_P_L, %g2
st %g2, [ %i1 ]

end of loop, increment 'incoming' and 'destination', decrement loop count, test for end and branch

dec %g3
add %i0, 4, %i0
add %i1, 4, %i1
cmp %g3, 0
bg,a -7
clr %g1

reload original 'incoming' and 'destination' pointers

ld [ %sp + 0x160 ], %i0
ld [ %sp + 0x164 ], %i1

end-of-procedure bookkeeping

ret
restore

Figure 10: A sample DCG conversion routine.
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Figure 11: Receiver side costs for interpreted conversions in MPI and PBIO and DCG conver-

sions in PBIO.

The bene�ts derived from the use of DCG are apparent from the execution times for these

dynamically generated conversion routines, which are shown in Figure 11 (we have chosen to

leave the XML conversion times o� of this �gure to keep the scale to a manageable size). From

these measurements, it is clear that the dynamically generated conversion routine operates

signi�cantly faster than the interpreted version. This improvement removes conversion as a

major cost in communication, bringing it down to near the level of a copy operation, and it is

the key to PBIO's ability to eÆciently perform many of its functions.

The cost savings achieved for PBIO described in this section are directly re
ected in the

time required for an end-to-end message exchange. Figure 12 shows a comparison of PBIO and

MPICH message exchange times for mixed-�eld structures of various sizes.10 The performance

di�erences are substantial, particularly for large message sizes where PBIO can accomplish a

round-trip in 45% of the time required by MPICH. The performance gains are due to:

10We choose MPICH for detailed comparison because it most closely matches PBIO performance. The results

for our sample CORBA IIOP implementation would be similar. Despite the fact that CORBA has a receiver-

makes-right marshalling mechanism, the copies performed by the marshalling mechanism give it a very similar

performance pro�le to MPICH in this heterogeneous exchange.
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Figure 12: Cost comparison for PBIO and MPICH message exchange. The PBIO total costs

are shown with a bar whose length is normalized to the corresponding MPI cost.
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Original Round-trip time

Data Size XML MPICH CORBA NDR

100Kb 1200ms 80ms 67ms 35ms

10Kb 149ms 8.4ms 8.8ms 4.3ms

1Kb 24ms 1.1ms 1.0ms 0.87ms

100b 9ms .66ms 0.6ms 0.62ms

Table 2: Cost comparison for round-trip message exchange for XML, MPICH, CORBA, and

NDR.

� virtually eliminating the sender-side encoding cost by transmitting in the sender's native

format, and

� using dynamic code generation to customize a conversion routine on the receiving side.

Once again, Figure 12 does not include XML times to keep the �gure to a reasonable scale.

We use MPI as representative to keep the �gure simple and so that the reader can see the

relative contribution of the costs that go into a round-trip exchange.

Table 2 summarizes the relative costs of the round-trip exchange with XML, MPICH,

CORBA, and PBIO and essentially provides a summary of the results presented in this section.

XML, the only other marshalling approach that supports the PBIO-like meta-information nec-

essary for plug-and-play communication, su�ers the triple disadvantages of high encoding costs,

high decoding costs and high network transmission times (because of expansion to ASCII and

inline meta-information). The result is a message round-trip time that is at least an order of

magnitude longer than the others. When compared with the less 
exible approaches, PBIO

o�ers a small but noticeable advantage for the smallest message sizes. This advantage grows

to be more signi�cant as the message size grows and the e�ects of data copying begin to have

a larger impact on end-to-end message times.
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4.4 High Performance and Application Evolution

The principal di�erence between PBIO and most other messaging middleware is that PBIO mes-

sages carry format meta-information, somewhat like an XML-style description of the message

content. This meta-information can be a useful tool in building and deploying enterprise-level

distributed systems because it allows generic components to operate upon data about which

they have no a priori knowledge, and because it allows the evolution and extension of the

basic message formats used by an application without requiring simultaneous upgrades to all

application components. In other words, PBIO o�ers limited support for re
ection and type

extension. Both of these are valuable features commonly associated with object systems.

PBIO supports re
ection by allowing message formats to be inspected before the message is

received. Its support of type extension derives from performing �eld matching between incoming

and expected records by name. Because of this, new �elds can be added to messages without

disruption because application components which don't expect the new �elds will simply ignore

them.

Most systems that support re
ection and type extension in messaging, such as systems using

XML as a wire format or marshalling objects as messages, su�er prohibitively poor performance

compared to systems such as MPI which have no such support. Therefore, it is interesting to

examine the e�ect of exploiting these features upon PBIO performance. In particular, we

measure the performance e�ects of type extension by introducing an unexpected �eld into the

incoming message and measuring the change in receiver-side processing. Note that we limit

ourselves to comparing di�erent aspects of PBIO's own performance because we are not aware

of another reasonably high-performance communication system that supports these features.

Figures 13 and 14 present receiver-side processing costs for an exchange of data with an

unexpected �eld. These �gures show values measured on the Sparc side of heterogeneous and

homogeneous exchanges, respectively, using PBIO's dynamic code generation facilities to create

conversion routines. It is clear from Figure 13 that the extra �eld has no e�ect upon the receiver-

side performance. Transmission would have added slightly to the network transmission time,

but otherwise the support of type extension adds no cost to this exchange.

Figure 14 shows the e�ect of the presence of an unexpected �eld in the homogeneous case.
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Figure 13: Receiver-side decoding costs with and without an unexpected �eld: Heterogeneous

case.
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Here, the overhead is potentially signi�cant because a homogeneous exchange would normally

not impose any conversion cost in PBIO. The presence of the unexpected �eld creates a layout

mismatch between the wire and native record formats that requires the relocation of �elds by

the conversion routine. As the �gure shows, the resulting overhead is not negligible, but it is

never as high as that incurred by the receiver of a heterogeneous exchange (Figure 13). For

smaller record sizes, most of the cost of receiving data is actually caused by the overhead of the

kernel select() call. The di�erence between the overheads for matching and extra �eld cases

is roughly comparable to the cost of a memcpy() operation for the same amount of data.

As noted earlier in Section 4.3, XML is extremely robust with respect to changes in the

format of the incoming record. Essentially, XML transparently handles precisely the same types

of change in the incoming record as PBIO. That is, new �elds can be added or existing �elds

reordered without worry that the changes will invalidate existing receivers. Unlike PBIO, XML's

behavior does not change substantially when such mismatches are present. Instead, XML's

receiver-side decoding costs remain essentially the same as presented in Figure 9. However,

those costs are several orders of magnitude higher than those of PBIO.

For PBIO, the results shown in Figures 13 and 14 are actually based upon a worst-case

assumption, where an unexpected �eld appears before all expected ones in the record, causing

�eld o�set mismatches in all expected �elds. In general, the overhead imposed by a mismatch

varies proportionally with the extent of the actual mismatch. An evolving application might

exploit this feature of PBIO by adding additional �elds at the end of existing record formats.

This would minimize the overhead caused to application components which have not been

updated.

5 Conclusions and Future Work

This paper describes and analyzes a basic factor determining the performance and 
exibility

of modern high performance communication infrastructures: the choice of \wire formats" for

data transmission. After examining the performance implications of di�erent wire formats,

we propose Native Data Representation, an alternative approach for 
exible high-performance
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data exchange in heterogeneous distributed systems and evaluate its current implementation.

Our NDR approach increases application 
exibility by allowing receivers to make run-time

decisions on the use and processing of incoming records without a priori knowledge of their

formats. NDR achieves high performance by reducing copy and conversion overheads at senders,

and by avoiding the potential costs of complex format conversion on the receiver's end through

runtime binary code generation. As a result, the additional 
exibility comes at no cost and, in

fact, the performance of PBIO transmissions exceeds that of data transmissions performed in

modern HPC infrastructures like MPI.

The current implementation of PBIO has some practical limitations that could be addressed

with additional development. For example, PBIO relies on the underlying machine for 
oating

point data conversions. Even with the ubiquity of IEEE 
oating point, this can be a problem if

the particular size of a sender's IEEE 
oating representation (such as 128-bit long double) does

not exists on the receiving end. This diÆculty could be addressed with the creation of a set of

synthetic type conversion routines. As we previously noted, supporting machines that use of

non-IEEE 
oating point representations or integer representations other than twos-complement

would also complicate PBIO, although this does not seem to be an issue with modern machines.

Finally, PBIO does not have any facility to detect or report under/over
ow in any conversion,

but such checks could be easily added to the generated conversion code.

In conclusion, this paper has demonstrated that the goals of 
exibility and high-performance

for dataexchange communication are not inherently incompatible. NDR supports the 
exibility

of XML-style plug-and-play communication with performance comparable to that of more �xed

wire format based approaches. Lastly, we have shown that dynamic code generation, while not

absolutely required, can play a valuable role in reducing end-to-end communication delays.

Several areas for future work exist, including detailed investigation of the one-time-costs

required to implement NDR. The general approach taken by PBIO includes a facility for out-

of-band transmission of message format information. Section 3.2.2 discussed our current ar-

rangement for format servers which provide this format information, but many others issues

remain to be addressed in this area, including making such a service more highly available and

understanding the performance implication of server placement and replication, particularly in
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mobile or less well-connected environments. We are also generalizing the notion of message

format to include XML \markup" information [22]. This allows XML/PBIO messages to be

transmitted in binary and \hydrated" to XML text or DOM tree upon arrival. Because the for-

mat is cached at the receiver, this approach should have signi�cant advantages over transmitting

textual XML directly.

We are continuing to develop the compiler techniques necessary to generate eÆcient binary

code, including the development of selected runtime binary code optimization methods and the

development of code generators for additional platforms, most notably the Intel StrongArm

and new HP/Intel RISC platforms. PBIO's approach of transmitting self-describing messages

directly in binary also allows very eÆcient processing of messages at intermediate points in

the communication [28]. We have extended the dynamic code generation tools with a simple

high-level language that allow \in-
ight" access to message contents for content-based routing

purposes, quality of service, message data reduction or other purposes. Future papers will

address the broader implications of these techniques.

In related research, our group is developing high performance communication hardware and

�rmware for cluster machines, so that PBIO-based messaging may be mapped to zero-copy

communication interfaces and so that selected message operations may be placed directly `into'

the communication co-processors being used [10, 29].

References

[1] B. Parvin, J. Taylor, G. Cong, M. O'Keefe, and M.-H. Barcellos-Ho�, \Deepview: A

channel for distributed microscopy and informatics," in Proceedings of Supercomputing '99

(SC1999), November 13-19 1999.

[2] C. M. Pancerella, L. A. Rahn, and C. L. Yang, \The diesel combustion collaboratory:

Combustion researchers collaborating over the Internet," in Proceedings of Supercomputing

'99 (SC1999), November 13-19 1999.

34



[3] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju, N. Mukji, B. Temko, and

M. Yechuri, \A component based services architecture for building distributed applica-

tions," in Proceedings of the 9th High Performance Distributed Computing (HPDC-9),

August 2000.

[4] S. Parker and C. R. Johnson, \SCIRun: A scienti�c programming environment for com-

putational steering," in Proceedings of Supercomputing '95 (SC1995), December 4-8 1995.

[5] T. Haupt, E. Akarsu, and G. Fox, \Web
ow: A framework for web based metacomputing,"

in High-Performance Computing and Networking, 7th International Conference (HPCN

Europe), pp. 291{299, April 1999.

[6] A. Wollrath, R. Riggs, and J. Waldo, \A distributed object model for Java system," in

Proceedings of the USENIX COOTS 1996, 1996.

[7] W3C, \Extensible markup language (XML)." http://w3c.org/XML.

[8] F. E. Bustamante, G. Eisenhauer, K. Schwan, and P. Widener, \EÆcient wire formats for

high performance computing," in Proceedings of Supercomputing '00 (SC2000), November

4-10 2000.

[9] D. Zhou, K. Schwan, G. Eisenhauer, and Y. Chen, \JECho - interactive high performance

computing with Java event channels," in Proceedings of the International Parallel and

Distributed Processing Symposium (IPDPS 2001), April 2001.

[10] M.-C. Rosu, K. Schwan, and R. Fujimoto, \Supporting parallel applications on clusters of

workstations: The virtual communication machine-based architecture," Cluster Comput-

ing, Special Issue on High Performance Distributed Computing, vol. 1, pp. 51{67, January

1998.

[11] M. Welsh, A. Basu, and T. V. Eicken, \Incorporating memory management into user-level

network interfaces," in Proceedings of Hot Interconnects V, pp. 27{36, 1997.

35



[12] G. Eisenhauer, \Portable self-describing binary data streams," Technical Report GIT-CC-

94-45, College of Computing, Georgia Institute of Technology, 1994.

[13] V. S. Sunderam, A. Geist, J. Dongarra, and R. Manchek, \The PVM concurrent computing

system," Parallel Computing, vol. 20, pp. 531{545, March 1994.

[14] I. Foster, C. Kesselman, and S. Tuecke, \The nexus approach to integrating multithreading

and communication," Journal of Parallel and Distributed Computing, pp. 70{82, 1996.

[15] M. P. I. M. Forum, \MPI: A message passing interface standard," tech. rep., University of

Tennessee, 1995.

[16] M. Lauria, S. Pakin, and A. A. Chien, \EÆcient layering for high speed communication:

Fast messages 2.x," in Proceedings of the 7th High Performance Distributed Computing

(HPDC-7), July 1998.

[17] Object Management Group, \The common object request broker architecture and CORBA

2.0/IIOP speci�cation," tech. rep., OMG, December 1998. http://www.omg.org/technol-

ogy/documents/formal/corba iiop.htm.

[18] G. T. Almes, \The impact of language and system on remote procedure call design," in Pro-

ceedings of the 6th International Conference on Distributed Computing Systems (ICDCS),

pp. 414{421, May 13-19 1986.

[19] S. W. O'Malley, T. A. Proebsting, and A. B. Montz, \Universal stub compiler," in Proceed-

ings of the symposium on Communications architectures and protocols (SIGCOMM '94),

August 1994.

[20] D.D.Clark and D.L.Tennenhouse, \Architectural considerations for a new generation of

protocols," in Proceedings of the symposium on Communications architectures and protocols

(SIGCOMM '90), pp. 200{208, September 26-28 1990.

[21] M. Schroeder and M. Burrows, \Performance of Fire
y RPC," in Proceedings of the 12th

ACM Symposium on Operating System Principles, pp. 83{90, December 1989.

36



[22] P. Widener, G. Eisenhauer, and K. Schwan, \Open metadata formats: EÆcient XML-

based communication for high performance computing," in Proceedings of the 10th High

Performance Distributed Computing (HPDC-10), August 2001.

[23] Unknown, \MPICH - a portable implementation of MPI." Argonne National Lab,

http://www-unix.mcs.anl.gov/mpi/mpich.

[24] J. Clark, \expat - XML parser toolkit." http://www.jclark.com/xml/expat.html.

[25] A. Gokhale and D. Schmidt, \Principles for optimizing corba internet inter-orb protocol

performance," 1998.

[26] D. R. Engler, \Vcode: a retargetable, extensible, very fast dynamic code generation sys-

tem," in Proceedings of the SIGPLAN Conference on Programming Language Design and

Implementation (PLDI '96), May 1996.

[27] G. Eisenhauer and L. K. Daley, \Fast heterogenous binary data interchange," in Proceed-

ings of the Heterogeneous Computing Workshop (HCW2000), May 3-5 2000.

[28] F. E. Bustamante, The Active Streams Approach to Adaptive Distributed Applications and

Services. Ph.d. Thesis, College of Computing, Georgia Institute of Technology, Atlanta,

GA, November 2001.

[29] R. Krishnamurthy, K. Schwan, R. West, and M. Rosu, \A network coprocessor based

approach to scalable media streaming in servers," in International Conference on Parallel

Processing (ICPP 2000), August 2000.

37


