
The Active Streams Approach to Adaptive Distributed Systems

Fabián E. Bustamante, Greg Eisenhauer, Karsten Schwan, and Patrick Widener
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332, USA

ffabianb, eisen, schwan, pmwg@cc.gatech.edu

The explosive growth of the Internet, with the emergence
of new networking technologies and the increasing num-
ber of network-capable end devices, is paving the way for a
number of novel distributed applications and services. Co-
operative distributed systems have become a common com-
puting model, and pervasive computing has caught the in-
terest of academia and industry. In the high-performance
community, for example, distributed scientific collaboration
projects [9, 8] aim to create environments where geograph-
ically dispersed communities of scientists cooperate to per-
form experiments on remote instruments and to share and
discuss their findings. The growing importance of perva-
sive computing [12], with its goal of providing access to
information anywhere/anytime through an invisible com-
puting infrastructure, is reflected in the number of major
academic research endeavors [10, 4, 3] and the increasing
interest from industry [6, 7].

The realization of these types of applications is compli-
cated by the characteristics of their target environments, in-
cluding their heterogeneous nature as well as the dynami-
cally varying demands on and availability of their resources.
Dynamic variations in resource usage are due to applica-
tions’ data dependencies and/or users’ dynamic behaviors,
while the run-time variation in resource availability is a con-
sequence of failures, resource additions or removals, and
most importantly, contention for shared resources.

To support future network applications, we believe that
new services need to be customizable, applications need to
be dynamically extensible, and both applications and ser-
vices should be able to adapt to variations in resource avail-
ability and demand. A comprehensive approach to building
new distributed applications can facilitate this by consider-
ing the contents of the information flowing across the appli-
cation and its services and by adopting a component-based
model to application/service programming. It should pro-
vide for dynamic adaptation at multiple levels and points in
the underlying platform; and, since the mapping of compo-
nents to resources in dynamic environment is too compli-
cated, it should relieve programmers of this task. In this pa-

Intermediate node Client 1Server

BA C

�
�
�
�

�
�
�
�

�
�
�
�...

Figure 1. Making a stream active.

per we proposeActive Streams[2], a middleware approach
and its associated framework for building distributed appli-
cations and services that exhibit these characteristics.

With Active Streams, distributed systems are modeled as
being composed ofapplications, services, anddata streams.
Services define collections of operations that servers can
perform on behalf of their clients. Data streams are se-
quences of self-describing application data units flowing
between applications’ components and services. They are
madeactive by attaching application- or service-specific
location-independent functional units, calledstreamlets
(Figure 1).

Streamlets are self-contained units that operate on
records arriving on their incoming streams and generate
records placed onto their outgoing streams. Streamlets can
be obtained from a number of locations; they can be down-
loaded from clients or retrieved from a streamlet repository.
Streamlets are created using E-Code, a subset of a gen-
eral procedural language, and dynamic code generation is
used to insure that they can be dynamically deployed and
efficiently executed across heterogeneous environments. E-
Code’s dynamic code generation capabilities are based on
Icode/Vcode [11]. Icode/Vcode supports dynamic code
generation for MIPS, Alpha and Sparc processors, and has
been extended to support MIPS n32 and 64-bit ABIs, Sparc
64-bit ABI, and x86 processors. Legacy applications, as
well as those built with new approaches such as CCA [1],
can be easily integrated with Active Streams because of our
focus on stream-based transformations on the datapath

Application evolution and/or a relatively coarse form of
adaptation are obtained by the attachment/detachment of
streamlets that operate on and change data streams’ prop-

Server 2

Intermediate node

A

B

C

Client 1Server 1

Server 2

Intermediate node

Congested network

A

B

CD

Server 1 Client 1

Server Intermediate nodeClient 1

A B C

Parameters
Update

Client 1
Server

Intermediate node

A B C

B

a. Attachment

b. Parameterization

c. Re−deployment

Figure 2. Types of adaptation in Active
Streams.

erties. Finer grain adaptation involves tuning an individual
streamlet’s behavior through parameters remotely updated
via a push-type operation, and by re-deploying streamlets to
best leverage the dynamically-changing available resources
over the datapath (Figure 2).

Active Streams are realized by mapping streamlets and
streams onto the resources of the underlying distributed
platform, seen as a collection of loosely coupled, intercon-
nected computational units. These units make themselves
available by running as Active Streams Nodes (ASNs),
where each ASN provides a well-defined environment for
streamlet execution. Active Streams applications rely on
a push-based customizable resource monitoring service
(ARMS) to collect resource information and trigger adap-
tation. Through ARMS, applications can select a subset of
the data made available by distributed monitors. These data
streams can be integrated to produce application-specific
views of system state and decide on possible adaptations.

As is common in distributed systems, a directory service
provides the “glue” that holds the Active Streams frame-
work together. The dynamic nature of most relevant objects
in Active Streams makes the passive client interfaces of
classical directory services inappropriate. Thus, the Active
Streams framework includes aproactivedirectory service
with a publish/subscribe interface through which clients can
register for notification on changes to objects currently of
interest to them. The levels of detail and granularity of these

Active Streams Node

ECho

Proactive D
irectory

Streamlet
Streamlet

Streamlet

AR
M

S

Stream
let R

epository

Figure 3. Active Streams Framework.

notifications can be dynamically tuned by the clients.
These three components, together with the repository

service previously mentioned, conform the core of the Ac-
tive Stream framework (Figure 3). The whole framework
relies on ECho, a high performance event infrastructure [5],
for its communication requirements.

The implementation of Active Streams is mostly com-
plete, and we plan on making it available by December
2001.

References

[1] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju,
N. Mukji, B. Temko, and M. Yechuri. A component based
services architecture for building distributed applications. In
Proceedings of the 9th High Performance Distributed Com-
puting (HPDC-9), Pittsburgh, PA, August 2000.

[2] F. E. Bustamante and K. Schwan. Active Streams: An ap-
proach to adaptive distributed systems. Tech. report, Col-
lege of Computing, Georgia Institute of Technology, At-
lanta, GA, June 1999.

[3] CMU. Project Aura. http://www.cs.cmu.edu/ aura.
[4] M. Dertouzos. The oxygen project.Scientific American,

282(3):52–63, August 1999.
[5] G. Eisenhauer, F. E. Bustamante, and K. Schwan. Event

services for high performance computing. InProceedings of
the 9th High Performance Distributed Computing (HPDC-
9), Pittsburgh, PA, August 2000.

[6] IBM. Pervasive computing. http://www-3.ibm.com/pvc.
[7] D. Neel. Compaq’s CEO advocates pervasive computing

applications.InfoWorld, March 26 2001.
[8] NPACI. Alpha projects. http://www.npaci.edu/Alpha, 2001.
[9] NSF:NEES Project. NEESgrid: earthquake engineering vir-

tual collabortory. http://www.neesgrid.org, 2001.
[10] G. I. of Technology and the Oregon Graduate Insti-

tute. Infosphere: Smart delivery of fresh information.
http://www.cc.gatech.edu/projects/infosphere.

[11] M. Poletto, D. Engler, and M. F. Kaashoek. tcc: A template-
based compiler for ‘c. InProceedings of the First Workshop
on Compiler Support for Systems Software (WCSSS), Febru-
ary 1996.

[12] M. Weiser. The computer for the 21st century.Scientific
American, 265(3):94–104, September 1991.

2

