
AIMS: Robustness Through Sensible Introspection

Fabián E. Bustamante, Christian Poellabauer and Karsten Schwan
College of Computing, Georgia Institute of Technology

Atlanta, Georgia 30332
ffabianb, chris, schwang@cc.gatech.edu

1 Introduction

As individuals and organizations increasingly rely on
services provided by complex computing systems for their
everyday tasks, system dependability becomes a main con-
cern. The dependability of a system is commonly defined as
the property of it such that reliance can justifiably be placed
on the service it delivers [1] and includes, as special cases,
attributes such as reliability, availability, safety, and secu-
rity. In addition, dependable systems must also be robust
when facing the “messiness” of the real world, delivering
correct service across a wide range of operational condi-
tions and failing gracefully outside that range [15, 16].

A common approach to obtain robust dependable sys-
tems is trying to predict the system’s future operational
conditions and provision it accordingly. This approach,
however, normally translates on high costs due to over-
provisioning and costly system updates (for its web site,
Charles Schwab maintains capacity at three to five times
peak volumes [22]), and when predictions fail it can result
on high average down-time with its associated costs1, esti-
mated at about$8; 000 per hour [5, 25].

In response, the systems community has identified as an
important focus for research the design of computing sys-
tems capable of adapting to predictable changing environ-
ments [2, 11, 12, 20] and, in this context, introspection has
proven to be a useful approach [3, 4, 13, 17, 18, 23]. In-
trospection is the ability to continuously monitor system
behavior and adapt to changing conditions. Central to the
process of providing introspection is the collection, aggre-
gation, and processing of monitoring data. Probes are in-
serted in different parts of the systems to collect raw mon-
itoring data about current hosts’ hardware capabilities, dy-
namically compute statistics on environmental or systems
conditions, or collate information on systems requests. The
collected data is then selected and integrated to produce
system-specific metrics, diagnose potential problems, and

1Delta Air Lines experiences recovery delays of up to several hours in
response to partial system outages [10] and EBay’s 22-hour crash in June
1999 cost the company more than$5 million in returned auction fees [25].

select among different adaptive measures to enact.
For robustness, however, the introspective component it-

self needs to be dynamically adaptive: the same complex-
ity that initially drove us to adopt introspection along with
the “messiness” of the real world mean that the parts mon-
itored, the monitoring granularity and even the processing
done on the collected data are bound to change dynamically.
Since(i) it is effectively impossible to predict all informa-
tion needed for introspection,(ii) even if we try, no intro-
spective system will be able to manage the amount of data
necessary to select the right adaptation to an overwhelming
number of possible system conditions, for the introspective
component to be useful in the real world it must be dynam-
ically adaptive, and(iii) the “right” adaptation may be situ-
ation dependent as well.

Our work at Georgia Tech focuses on exploring the idea
of dynamically adaptive introspective components for fu-
ture systems. To this end, we are buildingAIMS, anAdap-
tive Introspective Management Systemthrough which mon-
itoring probes (oragents) can be (un-)installed at runtime,
their execution can be finely tuned dynamically, and the
processing done on the collected data can be changed as
needed.

In the reminder of this paper, we describe the proposed
architecture, present some details on our current implemen-
tation, and describe our initial steps for the application of
our ideas on a publicftp service.

2 Architecture

AIMS offers a push-based/active customizable service
for environment- and self-monitoring. Hosts of interest to
an application must become AIMS nodes. Different objects
(including devices) at AIMS nodes are the sources of mon-
itoring data. AIMS nodes connect to other nodes in specific
sets or AIMS networks. AIMS clients connect to AIMS
networks through an AIMS node that could reside on its
own or another host. Clients express their interests in dif-
ferent monitored objects by requesting state reports on such
objects or selectively registering themselves with the moni-

1

Application

Probes Enaction

AdaptationCollection/Processing

Trigger

Monitoring data AdaptationIntrospection

Adaptation

EnactionCollection/Processing

Monitoring data

Feedback Adaptation

Adaptive introspection

Figure 1. AIMS adaptive introspection.

toring streams associated with those same objects. Requests
for continuous reports follow aleasemodel: they remain ac-
tive for a user-specified (but limited) time span after which
they are cancel. Previously issued requests can be re-issued
or canceled, before lease expiration, using their request IDs.

Clients can select a subset of the data made available
by different sensors, and integrate that data to produce
application-specific monitoring metrics and decide on pos-
sible adaptations. In addition, filters in AIMS can be in-
stantiated directly in the source of monitoring data streams
with the corresponding savings in bandwidth, and in sink or
source processing.

Sensors maintain histories of measurements. In order to
forecast performance availability, AIMS includes a library
with a number of predictive algorithms including mean-
based methods such as running, trimmed, and sliding win-
dow averages as well as minimum, maximum, median and
support to build autoregressive models.

An application using AIMS can easily redefine, at run-
time, its monitoring views by adapting/replacing the fil-
ters used for monitoring as its workload and environment
change. In this manner, applications have an additional
level of adaptation that would not be possible were the mon-
itoring and adaptation mechanisms coded statically for each
of them.

Figure 1 depicts an adaptation hierarchy: distributed sys-
tem resources are monitored and adapted (or controlled) by
the first-level adaptation mechanisms. At the second level,
the effectiveness of this adaptation is evaluated, and the
first-level monitors and controllers are adapted, if required.

As the operational environment of an application
changes and the administrator’s understanding evolves, the
focuses of monitoring and possible or useful adaptations
change as well. Researchers have developed a multiplicity
of tools for system instrumentation even helping developers

and users select suitable instrumentation points. There is,
however, the danger of over/under instrumentation. Overly
aggressive instrumentation results in potentially overloaded
and therefore, non-robust systems. Too conservative instru-
mentation may results in insufficient information to make
sound adaptation decisions. On the other hand, wrong adap-
tation decisions (perhaps due to insufficient or “old” mon-
itoring information) can be non-effective or directly coun-
terproductive [13]. In sum, the monitoring, data process-
ing, and adaptation part of the introspective component
need to be dynamically adaptable. The monitoring data fil-
ters/analyses and the adaptation tasks performed based on
them need to be (re-)deployed dynamically and executed ef-
ficiently; there is a need for light-weight ways to adapt sen-
sors functionality, data processing and the adaptation rou-
tines themselves. The goal of adapting the introspection
system is to improve the component’s efficiency for a given
execution instance: tuning the granularity of sensors, select-
ing the “right” prediction utility for the given monitoring
stream’s characteristics, reducing the monitoring overheads
and perturbations [9, 24], choosing the “right” adaptation at
a given point in time, and dealing with unpredictable disas-
ters [17]. Clearly, all this needs to be done without making
the adaptive introspective component so heavyweight as to
deny its benefits.

3 Implementation Details

Currently, AIMS nodes report information on memory
availability, CPU load, disk free space, up-time, and num-
ber of users currently logged on, as well as host name, IP,
number of CPUs, and configure triplet (as reported by GNU
config.guess). Status reports of network paths between two
AIMS nodes include latency and bandwidth. AIMS uses a
combination of passive and active sensors as needed [26].
Passive sensors exercise an external system utility, such as
uptime , and scan the utility’s output to obtain the required
information. Active sensors, on the other hand, must con-
duct a performance experiment, such as timing a message
exchange between two hosts, to measure the availability of
the monitored resources.

A recent result of our work includes dynamically in-
sertable kernel agents, which monitor system resources.
The feature of this mechanism distinguishing it from past
work is its ability to customize the monitors according to
a client’s specific needs. Applications manipulate these
agents via an interface implemented as an extension to the
Linux virtual file system/proc [14].

For adaptation, our approach includes the adaptation of
kernel-level resources. While it is straightforward to in-
spect and manipulate system resources within the kernel,
it takes costly interfaces to present to user-level manager
(often repeated system calls are needed to determine sys-

2

Channels
Notification/Configuration

Adaptive
Introspection

Engine

Server Pool

Front−End

Notification/Configuration Channel

Request Traffic

Figure 2. Cluster-based service with adaptive
introspection.

tem information or adapt system resources). In addition,
we have found that fine-grain kernel-level management of
resources can provide applications with benefits not derived
from coarser-grain, user-level management [13].

Resource controllers modify resource allocations to a
specific application based on the requirements of the ap-
plication and the availability of resources. Resource con-
trollers use information from monitoring agents for their
decision-making.

We have built a kernel-based event service aimed at sup-
porting the coordination among multiple kernel services
in distributed systems [19]. Event and publish/subscribe
services have become prevalent in distributed applications
ranging from virtual reality, avionics, to support for mobile
users [8, 21, 6]. Our current work investigates the utility
of a kernel-based event service for resource management,
distributed monitoring, and load balancing mechanisms.

4 An Example in Cluster-based Servers

We have started to apply this work to the monitoring of
cluster-based Internet services. In particular, we are work-
ing on anftp service for publicly available software pro-
vided by the CERCS research center in the College of Com-
puting at Georgia Tech. The high-level architecture of the
adaptive Internet service (Figure 2) is similar to the one de-
scribed by Chase et al. [7]. As with their work, the goals are
to maximize server performance and minimize the cost (en-
ergy) by concentrating requests on a minimal set of servers.
That is, some servers run at near 100% utilization, while
others are idle.

A cluster of servers consists of a front-end node and a
number of back-end nodes, with incoming requests being
forwarded by the front-end to one of the back-end nodes.
The individual cluster machines monitor their loads (CPU
utilization, queue lengths, etc.) and exchange such informa-
tion with each other via a kernel-level event channel. This
information is used(i) as a basis for admission control and

(ii) for load balancing. Further, this information is also
collected by a centralizedadaptive introspection engine,
which is able to adapt the front-end (e.g., to concentrate re-
quests or to react to failing backends) and the back-ends
(e.g., to vary queue lengths, change resource allocations, or
modify forwarding algorithms). This forms the first level
of the adaptive introspection mechanism. The second level
is formed by monitors at the hosts measuring the effective-
ness of the monitors and adaptation mechanisms. Again,
this information is collected at the central adaptive intro-
spection engine via another event channel. The engine is
able to modify the behavior of the monitors (e.g., frequency
of monitoring), the behavior of the event service (e.g., fil-
ters aggregate events or block events from being sent to idle
machines), and the controllers (e.g., change thresholds or
algorithms).

5 Conclusion

Our society increasingly relies on dependable complex
computing systems. To be useful, dependable systems must
also be robust when facing unpredictable changes to their
operating environments. Introspection has proven to be a
helpful approach in the design of dynamically adaptable
computing systems. We argue that, for robustness, the intro-
spective component itself needs to be dynamically adaptive
since(i) it is effectively impossible to predict all informa-
tion needed for introspection,(ii) even if we try, no intro-
spective system will be able to manage the amount of data
necessary to select the right adaptation to an overwhelming
number of possible system conditions, and(iii) the “right”
adaptation may be situation dependent as well.

At Georgia Tech we are exploring the idea of dynami-
cally adaptive introspective components for future systems.
To this end, we are buildingAIMS, anAdaptive Introspec-
tive Management Systemthrough which monitoring probes
(or agents) can be (un-)installed at runtime, their execution
can be finely tuned dynamically, and the processing done
on the collected data can be changed as needed.

We are exploring our ideas on the context of a cluster-
basedftp service, consisting of a front-end and a number of
back-ends and a centralized adaptive introspection engine.
Our future work will use adaptive mechanisms in the front-
end and in the back-ends to adjust admission control and
load balancing mechanism. AIMS will adapt these adapta-
tion mechanisms to maximize the performance and robust-
ness of the introspective system.

References

[1] Mario Barbacci, Mark H. Klein, Thomas H. Longstaff, and
Charles B. Weinstock. Quality attributes. Technical Report

3

CMU/SEI-95-TR-021, Carnegie Mellon University, Pitts-
burgh, PA, 1995.

[2] Thomas Bihari and Karsten Schwan. Dynamic adaption of
real-time software.ACM Transactions on Computer Systems,
May 1991.

[3] Aaron Brown, David Oppenheimer, Kimberly Keeton, Randi
Thomas, John Kubiatowicz, and David A. Patterson. Is-
tore: Introspective storage for data-intensive network ser-
vices, March 1999.

[4] Fabián E. Bustamante, Greg Eisenhauer, Patrick Widener,
Karsten Schwan, and Calton Pu. Active streams: An ap-
proach to adaptive distributed systems, May 2001.

[5] Bruce Caldwell. Cost of downtime.Information Week, May
12 1997.

[6] Antonio Carzaniga, David S. Rosenblum, and Alexander L.
Wolf. Design and evaluation of a wide-area event notifi-
cation service. ACM Transactions on Computer Systems,
19(3):332–383, August 2001.

[7] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, and
Amin M. Vahdat. Managing energy and server resources in
hosting centers, October 2001.

[8] Greg Eisenhauer, Fabian E. Bustamante, and Karsten
Schwan. Event services for high performance computing.
In Proc. of the 9th High Performance Distributed Comput-
ing (HPDC-9), Pittsburgh, PA, August 2000.

[9] Greg Eisenhauer, Weiming Gu, Karsten Schwan, and Niru
Mallavarupu. Falcon - toward interactive parallel programs:
The on-line steering of a molecular dynamics application,
August 1994.

[10] Ada Gavriloska, Karsten Schwan, and Van Oleson. Adapt-
able mirroring in cluster servers, August 2001.

[11] Steven D. Gribble. Robustness in complex systems, May
2001.

[12] IFIP WG10.4 and IEEE-CS. Dependability.org.
www.dependabiliy.org.

[13] Daniela Ivan-Rosu, Karsten Schwan, and Sudhakar Yala-
manchili Rakesh Jha. On adaptive resource allocation for
complex, real-time applications, December 1997.

[14] Jasmina Jancic, Christian Poellabauer, Karsten Schwan,
Matthew Wolf, and Neil Bright. dproc - extensible run-time
resources monitoring for cluster applications, April 2002.

[15] Philip Koopman and Henrique Madeira. Dependability
benchmarking & prediction: a grand challenge technology
problem, November 1999.

[16] J.C. Laprie, editor.Dependability: Basic concepts and ter-
minology in English, French, German, Italian and Japanese.
Springer-Verlag, 1992.

[17] Jeffrey C. Mogul. Operating systems support for busy Inter-
net services, May 1995.

[18] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan,
James Eric Tilton, Jason Flinn, and Kevin R. Walker. Agile
application-aware adaptation for mobility, October 1997.

[19] Christian Poellabauer, Karsten Schwan, Greg Eisenhauer,
and Jiantao Kong. Kecho - event communication for dis-
tributed kernel services, April 2002.

[20] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov.
Base: using abstraction to improve fault tolerance, Decem-
ber 2001.

[21] Antony Rowstron, Anne-Marie Kermarrec, Peter Druschel,
and Miguel Castro. Scribe: The design of a large-scale
event notification infrastructure. InProc. of the 3rd Interna-
tional Workshop on Networked Group Communication (NGC
2001), UCL, London.

[22] D. Scott. Web site availability and scalability: expert user
advice.Gartner Group Research Notes, December 2000.

[23] Margo I. Seltzer and Christopher Small. Self-monitoring and
self-adapting systems, March 1999.

[24] Ariel Tamches and Barton P. Miller. Fine-grained dy-
namic instrumentation of commodity operating system ker-
nels, February 1999.

[25] Tim Wilson. The cost of downtime.Internet Week, July 30
1999.

[26] Rich Wolski, Neil Spring, and Chris Peterson. Implementing
a performance forecasting system for metacomputing: The
Network Weather Service, November 1997.

4

