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ABSTRACT
Characterizing the flow of Internet traffic is important in
a wide range of contexts, from network engineering and
application design to understanding the network impact
of consumer demand and business relationships. Despite
the growing interest, the nearly impossible task of col-
lecting large-scale, Internet-wide traffic data has severely
constrained the focus of traffic-related studies.

In this paper, we introduce a novel approach to character-
ize inter-domain traffic by reusing large, publicly available
traceroute datasets. Our approach builds on a simple insight
– the popularity of a route on the Internet can serve as an
informative proxy for the volume of traffic it carries. It ap-
plies structural analysis to a dual-representation of the AS-
level connectivity graph derived from available traceroute
datasets. Drawing analogies with city grids and traffic, it
adapts data transformations and metrics of route popularity
from urban planning to serve as proxies for traffic volume.
We call this approach Network Syntax, highlighting the
connection to urban planning Space Syntax. We apply
Network Syntax in the context of a global ISP and a
large Internet eXchange Point and use ground-truth data
to demonstrate the strong correlation (r2 values of up to
0.9) between inter-domain traffic volume and the different
proxy metrics. Working with these two network entities, we
show the potential of Network Syntax for identifying critical
links and inferring missing traffic matrix measurements.

Categories and Subject Descriptors
C.2.5 [Communication Networks]: Local and Wide-
Area Networks—Internet ; C.4 [Performance of Systems]:
Measurement techniques

General Terms
Measurement, Traffic
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1. INTRODUCTION
Studies on the Internet inter-domain system have focused

on network connectivity and dynamics and have ranged
from exploring techniques to measure and generate AS-level
graphs [10, 17, 48] to examining the properties of topology
snapshots [23, 40]. There is, however, a growing consensus
on the need to shift focus beyond connectivity towards
understanding Internet traffic.

Knowledge of inter-domain traffic characteristics is im-
portant in a number of different contexts, from capacity
planning to anomaly detection, and performance analysis.
The major impediment to Internet traffic research has been
the scarcity of publicly available traffic data. Researchers
have typically had to choose between fine-grained data on a
small slice of the network [7,11,14,33], or publicly available,
but coarse-grained and sparse datasets [13]. While detailed
studies of important network entities such as Internet
eXchange Points (IXPs) [7] and Content Providers [6] can
improve our understanding of the inter-domain traffic, en-
listing the cooperation of Internet Service Providers (ISPs),
Content Providers or IXPs requires personal connections
and are thus hard to replicate or scale. On the other
hand, analysis of individual networks for which traffic data
is available, seriously limits researchers to a handful entities.

In this paper, we introduce a novel approach to char-
acterize inter-domain traffic by reusing the many publicly
available traceroute datasets. Our key observation is that
the popularity of a route on the Internet can serve as an
informative proxy for the volume of traffic it carries. While
traceroute measurements allow us to draw the paths taken
by packets when traversing the Internet, the routes identified
by a large number of traceroutes can be used to infer the
popularity of a path.

Building on this observation, we introduce a new abstrac-
tion of AS-level path and apply structural analysis to a dual-
representation of the AS-level connectivity graph, derived
from traceroute datasets. Drawing analogies with city grids
and traffic, we adapt metrics of route popularity from urban
planning to serve as proxies for network traffic. We call
this approach Network Syntax, highlighting the connection
to Space Syntax [26, 41], an urban-planning graph-based
approach to study human and vehicular flows by leveraging
the strong correlation between traffic and the morphological
property of streets. Network Syntax (as the related Space
Syntax) builds on known abstractions and techniques from



graph theory, and adapts them to our problem domain to
derive new insights on inter-domain traffic from traceroute
data.

We leverage publicly available traceroute datasets and
apply Network Syntax in the context of a global ISP and
a large Internet eXchange Point (IXP).1 To the best of our
knowledge, our work is the first to point out and capitalize
on the strong correlation between Internet route popularity
and the volume of traffic it carries, showing how this
popularity can be derived from easy-to-perform traceroute
campaigns and available datasets. In this context, we
present:

• An approach, Network Syntax, that leverages tracer-
oute datasets to tackle a problem that can currently
only be studied by a few researchers with access to
proprietary data.
• A demonstration of the strong correlations between

inter-domain traffic volumes and the different Network
Syntax metrics applied to traceroute-based AS-level
connectivity graphs (and, in contrast, the weak corre-
lations that result from applying them to BGP-derived
connectivity graphs).
• An analysis of the robustness of Network Syntax to

inherent idiosyncrasies of the underlying traceroute
data (e.g., IP alias resolution problem and inability
to trace through layer 2 clouds) and the particulars
of the measurement platform used (e.g., number and
network location of the vantage points).
• An illustration of the potential of Network Syntax with

two use cases – the prediction of missing traffic link
volumes in a connectivity graph, and the ranking of
AS-links based on traffic volume.

For validation we rely on traffic ground-truth data from an
ISP and an IXP; the fact that, as in most Internet studies,
we cannot reveal the sources or share this data, further
motivates our approach.

2. BACKGROUND
There is a large body of work focused on generating,

modeling and analyzing the inter-domain topology. These
include efforts that examine graph properties of the AS
topology as a logical construct [19, 23, 40], techniques to
measure and infer AS-level connectivity [10, 17, 48], ap-
proaches to model and characterize the Internet topol-
ogy [40], or concentrate on the IXP substrate and its
topological importance [8, 48]. Other efforts have used
traceroute measurements to augment intra-domain router-
level ISP maps by deriving OSPF link weights that are
consistent with routing [35].

Beyond topology, inter-domain traffic has been an active
research topic given its importance in a wide range of
contexts, from network engineering to application design.
However, while some research projects have made selected
network traffic traces available to vetted researchers [45],
the nearly impossible task of collecting large-scale, Internet-
wide traffic data has seriously restricted the focus of traffic-
related studies. Previous efforts have thus investigated
traffic estimation and characterization (e.g., [6,22,38,42,46]),
but have to rely on close collaboration with ISPs, content

1We are making our own traceroute dataset and Network
Syntax scripts publicly available.

providers or IXPs [16, 20–22, 33] to gain access to the
necessary traffic data or be limited by the coarse-grained
nature of publicly available datasets [13].

Some related efforts have explored techniques and method-
ologies for inferring traffic matrix elements that are either
not directly measurable [11,24] or missing [38,50–52]. What
distinguishes our approach from these methods is their
reliance, in one way or another, on link measurements
obtained from either proprietary data or publicly available
traffic measurements.2

3. NETWORK SYNTAX
In this section we expand on our descriptions of Network

Syntax, its methodology and metrics. Network Syntax
applies structural analysis to a dual-representation of the
AS-level connectivity graph, derived from publicly available
traceroute datasets, and uses different metrics to capture
the popularity of a network path as a proxy for the volume
of traffic it carries.

Drawing analogies with city grids and traffic, our approach
adapts metrics of route popularity from urban planning’s
Space Syntax [26,41] for the analysis of inter-domain traffic.
The following paragraphs presents a short overview of Space
Syntax. We refer the reader to Hillier et al. [26] for a more
in-depth description.

3.1 Space Syntax Overview
Space Syntax is a configurational analysis methodology

first introduced in 1984 [25] for predicting pedestrian move-
ment in urban settings based on an analysis of the urban
grid. The key observation behind Space Syntax is that the
configuration of space is the driving force behind how cities
operate. Over the years, this observation has been leveraged
to draw correlations between topological accessibility of
spaces and urban features: from pedestrian and vehicular
flows to land use, and the geographic distribution of various
types of crime [27].

In Space Syntax, cities are represented as “axial maps”
and then transformed into graphs. Axial maps of cities are
obtained by drawing the smallest number of straight lines
(called axial lines) that pass through all open spaces. These
maps are then transformed into graphs by representing the
axial lines as nodes and interconnecting the nodes that
intersect in the map. This dual representation of the
graph, where nodes are streets and edges are intersections,
focuses on the connectivity of the streets irrespective of their
width, length and location, and enables the identification of
concrete metrics for each street. The centrality of a street
or space in this graph is an indication of its importance in
the city operation. Figure 1 shows an example of such a
transformation.

Space Syntax introduces four core syntactic metrics,
three of which can be mapped to an equivalent graph-
theory metric but described using its own terminology. (1)
Connectivity – also known as degree centrality in graph
theory – is the simplest metric for assessing ranking of
nodes within a connectivity graph, it equals the number
of directly linked or neighboring nodes. A closely related
metric (2) Control value measures the degree to which space
controls access to its immediate neighbors by taking into
account the number of alternative connections that each of

2From networks such as Internet2 or GEANT.



Figure 1: A sample urban system (a), its axial map (b) and
connectivity graph (c).

these neighbors has [31]. It is calculated by summing the
reciprocals of connectivities between neighbors. This metric
can be linked to clustering coefficient in graph analysis.
(3) Global choice – also known as betweenness centrality
in graph theory – captures how often each line is used
on topologically shortest paths from all lines to all other
lines in the system. Finally, (4) Integration – a type of
normalized closeness centrality metric in graph analysis –
measures the mean distance between every segment and all
other segments in the system [32]. The more integrated
segments are those that are closest on average to all other
segments, while the more segregated segments are those
that are furthest on average from all other segments. Many
empirical studies have shown that the integration metric is
accurate in determining which segments are favored by the
configuration [26,32].

3.2 Network Syntax
We argue that the construction of AS-level connectivity

graphs as carved out by probes of large traceroute campaigns
contain valuable information that can be leveraged through
the use of similar metrics to those of Space Syntax. Carefully
vetted traceroute measurements allow us to derive partial
AS-level connectivity graphs that highlight the actual routes
traversed by data packets. Given that the popularity
of a route on the Internet can serve as an informative
proxy for the volume of traffic it carries, we argue that
by concentrating on all the AS-level paths that traverse
a specific AS, the application of graph structural metrics
can help us identify the popular links connected to those
networks.

We would not expect, however, that the direct application
of these metrics to just any undirected AS-level graph of the
Internet (such as one derived from BGP data) would yield
similar results. Indeed, as we show in Section 7.1, using
a non-uniform line representation of AS-level connectivity
and analyzing it by measures that are essentially topological
ignores too much contextual information to be useful.
The mere direct connectivity between two ASes says little
about the utilization of those links for carrying traffic
between different parts of the Internet, especially when
many important deciding factors such as routing policy are
ignored. After all, as has been pointed out, there are dangers
in taking available data at face value while ignoring domain-
specific context [47].

3.3 Connectivity Graphs and Metrics
At a high-level, Network Syntax metrics are applied to

connectivity graphs generated for specific ASes by extracting
the set of AS-level paths present in a traceroute dataset that
traverse each individual AS. Each of the different AS-level

Figure 2: Dual representation of a partial AS-level
connectivity graph. Each AS-link is represented by node,
while the intersection between AS-links (the Autonomous
Systems they interconnect) are represented as edges.

paths is broken down into pairs of hops which represent a
link between those ASes. The connectivity graph is gener-
ated by adopting a dual representation where each AS-link
is transformed into a node, while the intersection between
AS-links (the Autonomous Systems they interconnect) are
represented as edges. Figure 2 shows a connectivity graph
for a subset of important AS-links.

Metrics. The different metrics take a specific meaning
in the context of the dual representation of the AS-level
connectivity-graph.

Connectivity. In this context, captures the number of
different AS-links that precede or succeed each AS-link in
the graph. A high connectivity indirectly captures the
diversity of the different end-to-end AS-level paths that
traverse the link.

Control value of an AS-link is defined as the sum of
the reciprocal of its neighbors’ connectivity. Similar to
connectivity, it captures the diversity of the AS-level paths
that traverse the AS-link by considering the different AS-
links that precede or follow its directly connected links.

Global choice measures the popularity of a link by looking
at how likely it is to be passed through on all shortest paths
from all other AS-links in the network. Important links will
lie on a high proportion of paths between other AS-links in
the network.

Integration attempts to capture link popularity by looking
at the average distance from each AS-link to every other AS-
link in the connectivity graph. Using this metric, important
links are identified as those that are typically “close” (on
average) to other AS-links in the network.

ALTP-frequency. In our context, the popularity of an AS-
link can also be captured by the number of different end-to-
end AS-level paths (discovered by the probes of a traceroute
campaign) that traverse the particular link. That is, the
frequency of AS-link Traversing Paths, or ALTP-frequency.
This metric is specific to Network Syntax and seems to have
no obvious or commonly known parallel in either graph
theory or Space Syntax. We describe how to compute
ALTP-frequency in Section 4.3.



Dataset Unique VPs Src ASes Dst ASes Probes

Ono 2011 116,978 2,095 12,010 12.9M
Ono 2013 51,884 1,351 12,592 13.8M

Table 1: Number of unique vantage points, unique source
ASes and probes for each resulting dataset after applying
the different heuristics described in Section 4.2.

4. FROM NETWORK SYNTAX TO INTER-
DOMAIN TRAFFIC

In this section, we start with a description of our datasets:
a collection of traceroutes launched from topologically di-
verse vantage points and the traffic datasets we rely on for
ground truth. We describe then how we leverage the AS-
level paths gathered by the probes of traceroute datasets to
derive a connectivity graph upon which core Network Syntax
metrics can be applied.

4.1 Datasets
We evaluate Network Syntax using a traceroute dataset

and traffic data, our ground-truth, from two large network
entities: a large European IXP and a global ISP.

Traceroutes. Our traceroute datasets consist of data
collected in two difference campaigns by topologically di-
verse vantage points. It contains the probes launched
towards randomly selected IP addresses from the Ono
BitTorrent extension [18]. Ono peers perform measurements
to randomly selected destinations from the set of connections
established through BitTorrent. The datasets consist of all
the measurements gathered between two 30-day periods in
two different years – April 1 to 30, 2011 and April 1 to 30,
2013. Table 1 shows a summary of both datasets. The first
one consists of ≈12.9 million probes launched by 116,978
distinct vantage points located in 2,143 unique ASes. The
second dataset includes ≈13.8 million probes launched from
51,884 different vantage points located in 1,351 different
networks.

Traffic. To validate our approach, we perform our analysis
in the context of a large European IXP (IXP ) and a
global Tier-1 Internet Service Provider (ISP ). Ground-
truth traffic data for IXP consists of sFlow [30] records,
collected over 1-week periods in April 2011 and April 2013,
capturing the traffic exchanged over the public peering fabric
of the IXP. Using a random sampling of 1/16K packets, the
resulting traffic matrix contains the estimated number of
bytes exchanged between pairs of ASes peering at the IXP.
This detailed information allows us to rank the peerings
based on the volume of (bi-directional) traffic they exchange.

The ground-truth data for ISP consists of the traffic
exchanged between the ISP and all its customer ASes.
The data contains per-customer link utilization from SNMP
records for April 2011 and April 2013, and includes the 95th
percentile utilization during the course of the month of the
hourly port utilizations. Traffic data is summarized on a
per-customer basis using link aggregation across different
physical interfaces for customers with multiple links.

4.2 Methodology
We generate the partial connectivity graph for a particular

ASX from the total set of AS-level paths that include ASX,
i.e., paths that include AS-level links that connect to ASX.

This traceroute-derived AS-level graph is “partial” in that it
does not capture the complete connectivity graph. Since an
AS-level path is a sequence of AS-level links, we call such
AS-level paths ALTPs, for AS-link Traversing Paths.

The following paragraphs formally define ALTPs and
describe how they are extracted from traceroute datasets
and how they are used to generate a partial connectivity
graph.





 





 

Figure 3: Two instances of AS-link Traversing
Path ALTP (5, 6): 〈as1, as2, as3, AS5, AS6, as8〉,
〈as4, AS5, AS6, as7〉

AS-link Traversing Paths (ALTPs). Formally, an AS-
level path can be defined as a sequence of unique AS-level
links, each connecting a pair of ASes. We denote an AS-
level path as 〈as1, as2, ..., ask〉. We define an ALTP (x, y)
as an AS-level path that traverses the AS-link 〈x, y〉, i.e.,
〈as1, ..., x, y, ..., ask〉. Note that 〈as1, ..., x, y, ..., ask〉 and
〈ask, ..., y, x, ..., as1〉 are considered two different ALTPs.
Figure 3 shows an example of such a path. The ALTP
abstraction is directly applicable to paths that traverse an
IXP whose presence is identified by the prefix assigned by
the responsible Internet Registry. The set of all unique
ALTPs found in a dataset that traverse a specific AS-link is
called the ALTP-set of that link.

From probes to AS-level paths. We extract AS-level
paths from different traceroute datasets using public IP-to-
AS mapping and correcting for inconsistencies with BGP
information [17]. For paths that traverse an IXP, we
follow [10] to assign confidence levels to the discovered IXP-
peerings.

We first prune our dataset by eliminating loops and cycles
and filtering private and reserved IP ranges and remove the
associated hops if they appear at the ends of the probe. We
convert IP-level to AS-level paths using the AS mapping
derived from publicly available BGP information. From the
derived set we then conservatively remove any probes with
unknown AS-hops in the path, probes for which the source
or destination AS cannot be mapped3, and probes for which
the final AS-level path is too short (probes within the same
AS).

We then apply known heuristics [17] to correct the set of
AS-level paths, but preserving the IP addresses belonging to
known IXP hops. IXP mapping requires a complete list of
prefixes assigned to the different IXPs and the list of their
AS members which we obtain from centralized databases
like PCH [2], PeeringDb [3] and EuroIX [1], and websites
maintained by the IXPs themselves. We remove obsolete

3Since the removed links appear only in the discarded paths,
they are not popular and their removal has no impact on our
findings.



records (inactive IXPs) and match IXPs with different
names that represent the same entity. We assign confidence
levels to the discovered IXP peerings following the approach
in [10] labeling as high-confidence those peerings for which
we have probes traversing the peering in both directions
or those for which the ASes at both sides of the peering
have been identified as members of the IXP from BGP data
collected at the IXP. For our analysis we consider only these
high-confidence peerings.

AS-Link connectivity graphs. To generate the connec-
tivity graph for the various Autonomous Systems we extract
the set of ALTPs present in the dataset that traverse links
connected to each specific AS. As described in Section 3.2,
each different ALTP is broken down into pairs of hops which
represent a link between those ASes, and a dual-connectivity
graph is generated where each AS-link is transformed into a
node, while the intersection between links (the Autonomous
Systems they interconnect) are represented as edges.

4.3 Computing ALTP-frequency
Having introduced partial connectivity graphs and for-

mally defined ALTPs, we can now describe how to compute
the Network Syntax ALTP-frequency metric. Using the
derived set of AS-level paths, we compute the ALTP-sets
for all the AS-links of interest found in those paths.

The relative cardinality of the ALTP-set of an AS-link, in
a set S, is the cardinality of its ALTP-set divided by the
sum of the cardinalities of the ALTP-sets of every AS-link
in S. This relative cardinality is what we refer to as ALTP-
frequency.

5. EVALUATION
In this section, we apply the approach outlined in Sec-

tions 3 and 4 to the links of IXP and ISP present in our
2011 and 2013 traceroute datasets, we then analyze the rela-
tion between the different Network Syntax metrics and the
links’ traffic volumes. Note that the idea of route popularity
applies equally well to physical and logical AS-links between
ASes. As a result, the Network Syntax approach can be
applied in both our IXP and ISP scenarios for which the
available measurements provide ground truth about traffic
traversing physical and logical AS-links, respectively.

In our analysis, we rely on a number of statistical tech-
niques that assume normally distributed variables. However,
as we show next, this assumption does not necessarily
hold for all the variables we are interested in. A well-
known remedy for failure of normality expected by many
parametric tests [9, 28, 44] is to apply appropriately-chosen
transformations. In our analysis, whenever necessary, we
use the most appropriate transformation for the different
variables.

5.1 Traffic distribution
We first look at the traffic distribution for the subset of

AS-links discovered by the different traceroute campaigns
for both ISP and IXP . We extract from the corresponding
traffic matrix (derived from the ground-truth traffic data)
the amount of traffic each link carries, and generate a
histogram of their traffic distribution. Figure 4 shows this
histogram for the links of IXP discovered by the April 2011
traceroute campaign. As it is clear from the figure, the links’
traffic follows a power-law distribution with several heaviest
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Figure 4: Distribution of traffic for all peerings in
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Figure 6: Complimentary CDF of the cumulative fraction
of traffic for all AS-links of ISP and IXP discovered by our
traceroute datasets.

links carrying most of the traffic and the majority of the
links carrying very little traffic.

Figure 5 shows the goodness of fit statistical confirmation
that indeed the distribution of per-peering traffic (showed
in blue) follows a log-normal distribution (represented by
the dashed-green line), which is consistent with the pre-
viously observed property of intra-domain traffic matrix
snapshots [13,39].

We observe similar distributions in the traffic carried
by the links discovered by our April 2011 and April 2013
traceroute datasets for both ISP and IXP . This can be
seen in Figure 6, the complimentary CDF of the cumulative
fraction of traffic for all the discovered AS-links. In all
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Figure 7: Distribution of the transformed different metrics and traffic volume for all AS-links discovered in the April 2011
traceroute datasets for IXP . Similar distributions are observed for the other datasets and the two studied network entities.

cases, a small fraction of the links carries the majority of
the traffic. To approximate normality in the cases where the
dependent variable denotes traffic volume, we use the fourth
root transformation for its highly skewed distribution (see
Figure 7a).

5.2 Network Syntax analysis
We start by selecting, from our traceroute datasets, the

ALTP-sets for all relevant AS-links that traverse IXP and
ISP . We generate separate AS-link connectivity graphs
for each dataset and compute the different Network Syntax
metrics for each link present in the graph. Finally we
plot each AS-link against the volume of traffic it carries as
indicated by our traffic matrix.

To reduce the potential noise on the correlations intro-
duced by particular AS-links (e.g., due to sampling issues),
we use the different metrics to order AS-links, breaking ties
based on connectivity, and cluster them in equal sized groups
of ten links 4. For each group, we compute its value for both
the relative corresponding metric and carried traffic, as the
average of the individual values of the AS-links within the
group.

The different Network Syntax metrics present varied
distributions. As shown in Figure 7e, the integration
metric is already close to normal and is used without
transformation. Furthermore, while the control metric
(Figure 7c) is approximately normalized with the help of
a logarithmic transformation, for the rest of the metrics, we
achieve the desired approximate normality using the fourth
root transformation (see Figures 7b, 7d and 7f). Having
transformed the distributions of the dependent (i.e., traffic
volume) as well as independent variables, we can study
the relationships between traffic volume and the different
Network Syntax metrics.

Figures 8 to 11 show the correlations between the five
Network Syntax metrics and traffic volume for the links of

4Different clusters sizes yield similar trends.

ISP and IXP found in our traceroute datasets. The figures
are presented side by side to facilitate horizontal and vertical
comparisons between metrics and across datasets.

ALTP-frequency and connectivity have the strongest cor-
relation coefficients, with the integration metric having the
weakest one of all. The correlation with ALTP-frequency
has r2 values as high as 0.95 (ISP in April 2013) with the
lowest value at 0.71 (for IXP in April 2013). We argue
that this strong correlation comes from the fact that ALTP-
frequency more directly captures the popularity of the high-
traffic links.

The connectivity metric shows consistently strong correla-
tions as well, with r2 values ranging between 0.61 (for IXP
April 2011) to 0.95 (for ISP April 2013). Recall that this
metric captures the degree of each node in the connectivity-
graph which correspond to a different AS-link in our dual
representation of the AS-level connectivity-graph. As such,
a large connectivity value captures the number of different
AS-links that precede or succeeds it on the ALTPs identified.
The connectivity metric, then, captures the diversity of the
ALTPs that traverse through the link; it indirectly captures
the ALTP-frequency of the link.

The correlation between traffic volume and the control
value metric, while still strong, is comparably lower with
a minimum r2 value of 0.52 (for IXP April 2013) and a
maximum value of 0.76 (for ISP April 2011). Although
this metric is based on the connectivity values of a link’s
neighbors, it can overestimate the popularity of an AS-
link given that the high connectivity of a neighbor can be
partially due to AS-links traversed by paths that never cross
the link in question.

The integration metric highlights the AS-links that have
the shortest average path to every other AS-link in the
network. The results for this metric present the largest
variations in terms of correlation for the different datasets,
ranging from 0.356 (for IXP April 2013) to 0.826 (for ISP
2011).
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Figure 8: Correlation between connectivity, control value, global choice, local integration metric (integration radius 2) and
ALTP-frequency with traffic volume for IXP for April 2011.
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Figure 9: Correlation between connectivity, control value, global choice, local integration metric (integration radius 2) and
ALTP-frequency with traffic volume for IXP for April 2013.

Finally, recall that global choice takes into account the
relations between each node and the whole system. It
indexes how often each line is used on topologically shortest
paths from all lines to all other lines in the system.
It thus, finds the AS-links that are necessary conduits
for information that must traverse disparate parts of the
network. The figures show that the correlation of this metric
with traffic volume is also significant, with r2 values between
0.58 (for IXP April 2013) and 0.90 (for ISP April 2013).

IXP ISP
Apr 2011 Apr 2013 Apr 2011 Apr 2013

Connectivity 0.729 0.617 0.789 0.954
Control Value 0.685 0.521 0.759 0.750
Global Choice 0.661 0.580 0.653 0.903
Integration 0.575 0.356 0.826 0.629
ALTP-freq 0.799 0.713 0.965 0.958

Table 2: r2 values of the different metrics for ISP and IXP .

The values in Table 2 show that, although the different
datasets vary in their degree of correlation, the regression
lines are more or less coincident. While varying with
context, a correlation coefficient greater than 0.5 is generally
considered strong, and values greater than 0.8 as very strong
correlation. The table shows the values of the coefficient
of determination resulting from our regression analysis –
nearly all (19/20) the r2 values are above 0.5 and the ALTP-
frequency values range between 0.7 and 0.96.

While the ALTP-frequency metric outperforms the rest
of the metrics, there is a strong correlation between the

different metrics and traffic. Exploring the relationship
between different variables is part of future work.

6. USE CASES
In this section, we illustrate the potential uses of Network

Syntax using two use-cases: (i) predicting missing traffic link
volumes in a connectivity graph and, (ii) ranking AS-Links
based on their traffic volume.

6.1 Predicting link traffic
We have shown in Section 5.2 that the fraction of traffic

carried by the AS-links identified in massive traceroute
datasets strongly correlates with the different Network
Syntax metrics when those links are clustered in small
groups. We now show that it is possible to leverage this
strong correlation to estimate the traffic volume of arbitrary
links, in the absence of ground-truth traffic data as long
as we have information about the traffic for a subset of
the remaining links in the connectivity graph. We do this
using the April 2013 datasets for ISP ; similar results were
obtained using the remaining datasets.

In this analysis we employ a subset of the clusters of AS-
links to compute the correlation and corresponding regres-
sion line between traffic volume and the Network Syntax
metric with the strongest correlation: ALTP-frequency. We
then use the computed parameters to estimate the traffic
volume of the remaining clusters of links by using their
ALTP-frequency as proxy.

To reduce the number of links per cluster as much as
possible, we start by generating clusters of size ten as
described in Section 5.2. We then remove, from each
individual cluster, the AS-links that diverge from the median
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Figure 10: Correlation between connectivity, control value, global choice , local integration metric (integration radius 2) and
ALTP-frequency with traffic volume for ISP for April 2011.
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Figure 11: Correlation between connectivity, control value, global choice, local integration metric (integration radius 2) and
ALTP-frequency with traffic volume for ISP for April 2013.

cluster ALTP-frequency by at least one standard deviation
(a total of 25 links out of 147). This allows us to use the
remaining links to generate clusters of half their original size
while maintaining a similarly strong correlation.5 Figure 12
shows this correlation and corresponding regression line for
ISP for clusters of size five for the remaining 122 links.

We vary the fraction of clusters used to compute the
regression line from 65% to 85% of the available clusters
(in increments of 5%) and compute the difference, in orders
of magnitude, between the median estimated traffic values
and the actual traffic values (from the ground-truth) for the
remaining clusters.6 If the estimated and real value fall
within the same order of magnitude (say, between 0 and
10MB or between 10 and 100MB), then the difference is zero.
A difference between the estimated and real value of 1, on
the other hand, means we may have under/over-estimated
the traffic volume by one order of magnitude (e.g., declaring
it to be in 50MB when it is closer to 5MB).

Figure 13 shows the result of our analysis after repeating
our random selection for each percentage of clusters, 500
times. The figure plots the median difference between
estimated and actual traffic volumes for each of the different
fractions. For the median case, ≈80% of the estimated
values fall within the same order of magnitude as the ground-
truth values.

To characterize the size estimation errors for the link
clusters with predicted and real values within the same order

5We observed similar results using clusters of size ten,
without removing any links from the original sets.
6We considered the use of OC-based bucketing for this case
study, but decided against it as our analysis compares groups
of links rather than individual ones.

of magnitude, we compute the normalized mean absolute
error between the median estimated and ground-truth traffic
volumes. Figure 14 plots the mean estimation error for
the different fractions of clusters used to compute the
regression line. The figure shows the standard deviation
logically varies depending on the fraction of clusters used.
That is, increasing the number of points used to compute
the fit decreases the number of clusters left for value
estimation, making estimation errors more noticeable for
smaller clusters. However, although for some clusters of
links the traffic prediction estimates can be off by a large
margin (e.g., predicting traffic to be 5MB when it was
close to 1MB yields an error of 500%), the figure shows
that the mean value remains relatively stable around 0.5,
indicating that, on average, the median estimated traffic (in
megabytes) differs from the cluster’s real value by ≈50%.
While we acknowledge that order of magnitude is a coarse
approximation, we argue this is a valuable first step at
inferring traffic volumes that are not directly measurable
at scale or without access to a collection of proprietary data
(e.g., Arbor Network’s collection of inter-domain traffic data
from some 110 commercial networks [33]). For instance, the
approximate nature of alternative methods that formulate
inter-domain traffic estimation as a matrix completion prob-
lem [24] is largely unknown.

6.2 Ranking AS-Links based on Traffic Vol-
ume

As our second use case, we show that ranking AS-links
based on different Network Syntax metrics can be used as a
proxy for the traffic-volume based ranking of those links.
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Figure 12: Correlation between ALTP-frequency and traffic
volume for ISP for April 2013 with clusters of size 5.
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Figure 14: Traffic prediction using ALTP frequency.

For this analysis, we start by ranking the AS-links based
on the amount of traffic they carry using our ground-truth
traffic. We then select the subset of links identified on our
traceroute dataset and rank those links a second time, based
on the selected Network Syntax metric. As before, to reduce
the potential noise introduced by the ranking of individual
AS-links, we cluster them in equal-sized groups (ten in this
case). For each group, we compute its ranking for both the
relative Network Syntax metric and carried traffic, as the

average of the individual rankings of the AS-links within the
group. Given the strong correlation between the different
Network Syntax metrics and traffic volume, potentially any
of the metrics could be used to rank the links. For this
analysis we select the two metrics with the highest degree of
correlation: connectivity and ALTP-frequency, and compare
their results.

Figures 15 and 16 show the correlation between traffic-
based ranking and connectivity or ALTP-frequency respec-
tively, for both IXP and IXP . The figures show strong r2

for all four dataset using both Network Syntax metrics.
However ALTP-frequency r2 values are slightly higher than
their connectivity counterpart, with values as high as 0.95 in
the case of ISP and 0.75 in the case of IXP . Regardless, the
results from this analysis show that using Network Syntax
metrics to rank AS-links can be effectively used to rank links
based on the amount of traffic they carry.

7. DISCUSSION
In this section, we elaborate on three critical issues: (i)

wether the application of Network Syntax analysis to AS-
level connectivity graphs derived from BGP data works as
intended, (iii) the robustness of the approach to the known
pitfalls of IP-to-AS level mapping for AS topology inference
when using traceroute datasets, and (iii) the impact of
different traceroute dataset characteristics on the results
from Network Syntax metrics.

7.1 BGP-derived connectivity-graphs
As we discussed in Section 3.2, Network Syntax can not be

applied to just any AS-level connectivity graph but depends
on the information embedded in the graph inferred from
traceroute datasets. To illustrate this we apply Network
Syntax to the connectivity graph for ISP derived from
the subset of AS-level paths contained in the public BGP
view [5] for April 2011. Specifically, we extract all the
BGP announcements that contain the AS number for ISP ,
derive their corresponding AS-level paths, and generate the
connectivity-graph. We then compute the different Network
Syntax metrics and evaluate our findings in the context
of the ground-truth traffic data for ISP for same time
period. As in Section 5, we first rank the links based on the
corresponding metric and create clusters of ten links before
examining the correlation.

Figure 17 shows the results of our analysis for the subset
of 2,016 links identified in the dataset for the connectivity,
control value, global choice and integration metrics. Since
this analysis is based on AS-level paths extracted from
BGP announcements, no traceroute probes were available
to compute the ALTP-frequency metric.

The figure shows that, as anticipated, none of the met-
rics are strongly correlated with traffic volume. In most
cases, links are clustered together either on the lower left
side of the plot (corresponding to low traffic volume and
nearly identical Network Syntax metric) as is the case in
Figures 17c, 17b and 17c, or mostly grouped on the right
lower side of the plot (which corresponds to high Network
Syntax metric and low traffic volume) in the case of 17d.
The seemingly moderately strong r2 values are mostly driven
by a few outliers, but it is apparently clear from the figures
that the cluster of links are not cleanly distributed around
the regression line (in contrast to Figures 10 and 11). This
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Figure 15: Ranking based on connectivity and traffic volume.
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Figure 16: Ranking based on ALTP-frequency and traffic volume.
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Figure 17: Correlation between Network Syntax metrics and traffic volume (BGP dataset) for ISP April 2011.

analysis shows that it is the data-plane and not the control-
plane perspective that is relevant for Network Syntax.

7.2 Errors in traceroute-to-AS mappings
The pitfalls of IP-to-AS level mapping for AS topology

inference are well-known. The common approach of using
longest prefix matching to map the routers’ IP addresses of a
traceroute to AS numbers is known to generate potentially
false AS links [49]. Several previous research efforts have
studied these pitfalls [15,17,29,36,37] and identified common
causes for the mismatch which range from the incomplete-
ness of IP-to-AS mappings gathered from publicly available
BGP feeds, to the constraints inherent to the traceroute

measurement itself (e.g., routers silently dropping probes or
not altering packets’ TTL). We correct our datasets to avoid
these pitfalls, as described in Section 4.2.

In this section we explore the robustness of Network
Syntax when applied to traceroute datasets with some of
these well known problems. We do this by computing the
different Network Syntax metrics on the un-corrected April
2011 traceroute dataset for ISP and comparing the resulting
correlation with the corrected version.

To generate this alternative dataset we apply the same
basic traceroute sanitation process described in Section 4.2
but stop before the application of the correction heuristics
described in [17], wich we summarize in Table 3. The
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Figure 18: Correlation between connectivity, control value, global choice , local integration metric (integration radius 2) and
ALTP-frequency with traffic volume for ISP for April 2011 using the CAIDA traceroute dataset.

0.5 0.0 0.5 1.0 1.5 2.0
AS-level path ranking 1e3

0

500

1000

1500

T
ra

ff
ic

 r
a
n
ki

n
g

r=0.717, r2 =0.514

(a) IXP April 2011

0.5 0.0 0.5 1.0 1.5 2.0
AS-level path ranking 1e3

200

400

600

800

1000

1200

1400

1600

T
ra

ff
ic

 r
a
n
ki

n
g

r=0.634, r2 =0.402

(b) IXP April 2013

1 0 1 2 3 4 5 6
AS-level path ranking 1e2

0

100

200

300

400

500

600

T
ra

ff
ic

 r
a
n
ki

n
g

r=0.819, r2 =0.671

(c) ISP April 2011

2 0 2 4 6 8
AS-level path ranking 1e2

0

100

200

300

400

500

600

700

T
ra

ff
ic

 r
a
n
ki

n
g

r=0.855, r2 =0.731

(d) ISP April 2013

Figure 19: Correlation between ALTP-frequency and traffic volume for IXP and IXP using CAIDA datasets.

False AS links problems

Internet eXchange Points (IXPs)
Sibling ASes

Unannounced IP addresses
Using outgoing interface IPs
Private peering interface IPs

Table 3: Summary of problems within traceroute-inferred
AS-level paths addressed by the filtering heuristics proposed
in [17].

Ono April 2011
1. Repeated Hop 19%
2. Unk Hop in Path 47%
3. Unk Src or Dst ASN 5%
4. Path too Short 30%

Table 4: Percentage of probes dropped by each of the
extraction rules.

basic sanitation process conservatively discards ≈61% of our
initial dataset and reduces the number of probes to 12.9M.
Table 4 presents a summary of the fraction of traceroutes
dropped by each of our basic sanitation rules.

Table 5 presents a comparison of the r2 values for the
different metrics when Network Syntax is applied to the
connectivity graphs that result from both the un-corrected
and corrected versions of the dataset. The results show that
the application of the different correction heuristics does

improve correlation between traffic volume an the different
metrics, but most metrics (with the exception of global
choice) still show significant r2 values when computed using
the un-corrected dataset.

When comparing both the corrected and un-corrected
datasets, we note that the amount of traceroutes modified
by the different correction heuristics accounts for ≈16% of
the probes; which ultimately map to approximately 6% of
the end-to-end AS-level in the dataset. The results from
Table 5 highlight the robustness of Network Syntax when
identifying popular AS-links in the presence of mis-mapped
paths in the underlaying connectivity-graph.

7.3 Other datasets
We have shown that applying Network Syntax metrics

to AS-level connectivity graphs using paths extracted from
massive traceroute datasets reveals a strong correlation
between traffic volume and the different metrics. We
now apply the same technique to a different dataset, one

Un-corrected Corrected
Connectivity 0.759 0.789
Control Value 0.708 0.759
Global Choice 0.314 0.653
Integration 0.749 0.826
ALTP-frequency 0.919 0.965

Table 5: r2 values of the different metrics for ISP using the
April 2011 dataset.



collected from CAIDA’s Ark monitors for the same time
periods. This tracerotue dataset consist of probes launched
towards randomly selected IP addresses from CAIDA’s Ark
monitors [12] which probe IP addresses from every routable
IPv4 /24 prefix in cycles of approximately 48 hours. For
this analysis, we combined data from three different probing
cycles completed by different sets of Ark monitors between
April 1-7, 2011 and April 1-7, 2013.

Figure 18 shows a comparison of the correlation between
traffic volume and the different Network Syntax metrics for
the CAIDA 2011 dataset for ISP7. The observed trends
are similar to those seen in Section 5.2, where the amount
of traffic carried by the clustered links strongly correlates
with the different Network Syntax metrics. Additionally,
Figure 19 shows a comparison of the correlation of AS-link
ranking based on traffic volume versus ranking based on
ALTP-frequency, using the CAIDA dataset for both IXP
and ISP . The same trends as those seen in Section 6.2 can
be observed for both network entities, with clusters of links
carrying larger amounts of traffic corresponding to higher
ALTP-frequency links.

Even though in both cases the correlations can still be
observed, the r2 values are smaller than their Ono-dataset
counterpart. We argue that this is due to a fundamental
difference on how the underlaying traceroutes were collected.
As Table 6 shows, although the tracerotues of both the
Ono and CAIDA datasets contain millions of traceroutes
launched against a large number of different destination
ASes; there is a 2-order of magnitude difference in the
number of source ASes from where the probes were launched.

Even though the correlation is still present, the r2 values
are smaller than their Ono-dataset counterpart. We argue
that this is due to a fundamental difference on how the
underlaying traceroutes were collected. As Table 6 shows,
although the tracerotues of both the Ono and CAIDA
datasets contain millions of traceroutes launched against a
large number of different destination ASes; there is a 2-order
of magnitude difference in the number of source ASes from
where the probes were launched.

As discussed in [34], one consequence of taking measure-
ments using a small number of sources and relying on an end-
to-end strategy, is that edges are selected disproportionately,
so bias arises when edges incident to a node in the underlying
graph are sampled disproportionately. Thus, an edge is
much more likely to be visible if it is close to the vantage
point that discovered them. To explore this potential issue,
we focus our analysis on the CAIDA 2011 dataset and look
at the discovered AS-links as the intersection of the number
of probes that crossed through them vs the corresponding
number of ALTPs that contain it. We concentrate on the
top AS-link with the largest number of ALTPs which is
seen by almost 10K ALTPs and was discovered by almost
half a million probes. Closer inspection shows that the
link connects AS195 (San Diego Supercomputer Center) and
AS2152 (the California State University Network) at SD-
NAP (an IXP located in San Diego, CA), and that all the
probes responsible for discovering this link correspond to a
CAIDA Ark monitor placed in the San Diego Supercomputer
Center. A similar scenario was observed for the other
top three links. This highlights that the location of the

7Similar trends were observed for both IXP and ISP using
CAIDA’s 2011 and 2013 datasets.

Dataset Unique VPs Src ASes Dst ASes Probes

CAIDA 2011 53 52 36,034 26.9M
CAIDA 2013 65 60 42,440 48.9M

Table 6: Number of unique vantage points, unique source
ASes and probes for each dataset.

vantage points can lead to erroneous inferences about a link’s
popularity.

8. CONCLUSIONS AND FUTURE WORK
We advance the state-of-the-art in traffic characterization

by presenting a novel technique to infer traffic volumes from
AS-level routing graphs carved out by massive traceroute
campaigns. Our Network Syntax approach builds on the
observation that the popularity of a route on the Internet
can serve as an informative proxy for the volume of traffic
it carries. Drawing analogies with city grids and traffic,
Network Syntax applies structural analysis and metrics to
predict with high accuracy the inter-domain traffic volume
carried by different links. We demonstrated the effectiveness
of our approach using two months of data (collected two
years apart) from a Tier-1 Internet Service Provider and a
large Internet eXchange Point, by identifying traffic-critical
links and inferring missing traffic matrix measurements.

We evaluated four different publicly available traceroute
datasets, but selected two for inclusion (due to space
constraints) representing different standpoints with respect
to type and location of vantage points. Multiple other
datasets collected over the years could be leveraged by
our technique, such as RIPE’s Atlas project [4], or those
collected from the DIMES project [43].

Going forward, Network Syntax opens a rich research
agenda from specific methodological aspects (e.g., different
metrics and datasets attributes) to applications of a better-
understood flow of Internet traffic. Could we identify high-
traffic links in the context of arbitrary AS-links on the
Internet, i.e. can we establish the relative importance of
a pair AS-links not tied to a specific network? This could
be used, for instance, to augment existing AS-topology
maps with the relative importance of links based on traffic
carried. Could Network Syntax, perhaps in combination
with existing techniques, be used to complete partial-traffic
matrixes? Given our new ability to leverage long-available
traceroute datasets, what could this approach tell us about
the variability and evolution of the Internet over time?
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