
1

A measurement experimentation
platform at the Internet’s edge

Mario A. Sánchez† John S. Otto† Zachary S. Bischof† David R. Choffnes‡

Fabián E. Bustamante† Balachander Krishnamurthy∗ Walter Willinger◦1

†Northwestern University ‡Northeastern University ∗AT&T Labs-Research ◦Niksun, Inc.

Abstract—Poor visibility into the network hampers progress
in a number of important research areas, from network trou-
bleshooting to Internet topology and performance mapping. This
persistent, well-known problem has served as motivation for
numerous proposals to build or extend existing Internet mea-
surement platforms by recruiting larger, more diverse vantage
points. Capturing the edge of the network, however, remains an
elusive goal.

We argue that at its root the problem is one of incentives.
Today’s measurement platforms build on the assumption that
the goals of experimenters and those hosting the platform are
the same. As much of the Internet growth occurs in residential
broadband networks, this assumption no longer holds.

We present a measurement experimentation platform that
reaches the network edge by explicitly aligning the objectives of
the experimenters with those of the users hosting the platform.
Dasu – our current prototype – is designed to support both
network measurement experimentation and broadband charac-
terization. Dasu has been publicly available since July 2010 and
has been installed by over 100,000 users with a heterogeneous
set of connections spreading across 2,431 Autonomous Systems
(ASes) and 166 countries. We discuss some of the challenges
we faced building and using a platform for the Internet’s
edge, describe its design and implementation, and illustrate the
unique perspective its current deployment brings to Internet
measurement.

Index Terms—Internet Measurements, Internet Experimenta-
tion.

I. INTRODUCTION

Our poor visibility into the network hampers progress in
a number of important research areas, from network trou-
bleshooting to Internet topology and performance mapping.
This well-known problem [1], [2] has served as motivation for
several efforts to build new testbeds or expand existing ones by
recruiting increasingly large and diverse sets of measurement
vantage points [3]–[6]. Today’s measurement and experimen-
tation platforms offer two basic incentive models for adoption
– cooperative and altruistic. In cooperative platforms such as
PlanetLab [7] and RIPE Atlas [8] an experimenter interested in
using the system must first become part of it. Other platforms
such as SatelliteLab [3] and DIMES [5] have opted instead
for an altruistic approach in which users join the platform for
the betterment of science. Despite these efforts, capturing the
diversity of the commercial Internet – including end-hosts in
homes and small businesses – at sufficient scale remains an
elusive goal [9], [10].

1Work done while at AT&T Labs–Research.

We present a measurement experimentation platform that
reaches the network edge by explicitly aligning the objectives
of the experimenters with those of the users hosting the
platform. Dasu2 – our current prototype – is designed to
support network measurement experimentation and broadband
characterization. Both functionalities benefit from wide net-
work coverage to capture network and broadband service
diversity. Both can leverage continuous availability to capture
time-varying changes in broadband service levels and to enable
long-running and time-dependent measurement experiments.
Both must support dynamic extensibility to remain effective
in the face of ISP policy changes and to enable purposefully-
designed, controlled Internet experiments. Finally, both func-
tionalities must be available at the edge of the network to
capture the end users’ view of the provided services and offer
visibility into this missing part of the Internet [11]. Dasu has
been publicly available since June 2010 and has been installed
by 100,118 users with a heterogeneous set of connections
spreading over 2,431 166 Autonomous Systems (ASes) and
across 166 countries.

The strengths and challenges of this new class of exper-
imental platforms come from their inclusion of end users’
devices at the network edge. Increased network coverage
comes, for starters, at the price of radically more complex and
less dependable platform environments at homes and coffee
shops. The scale, dynamics and diversity of these new settings
raise questions about the class of experiments feasible and the
way in which experiments are declared, deployed and their
execution controlled – How does one define experiments for
thousands of highly volatile nodes? How can we efficiently
utilize the newly available resources for experimentation while
controlling the performance impact of these experiments on
users hosting the platform and the Internet as a whole?

In this paper, we address key algorithms and system de-
sign issues in building and using a larger-scale, experimental
platform for the Internet’s edge. Our main contributions are:
• We characterize the challenging setting of edge-network

experimentation platforms and show that, despite their
increasing complexity, they offer a sufficiently stable and
resource-rich environment to host a platform’s vantage
points (§III).

• We present the design and implementation of Dasu – an
extensible platform for measurement experimentation for

2Dasu is a Japanese word that means “to reveal” or “to expose”.

2

the Internet’s edge (§IV).
• We characterize Dasu’s current deployment and present

results demonstrating how the participating nodes collec-
tively offer broad network coverage, sufficiently high avail-
ability and fine-grained synchronization to enable Internet
measurement experimentation (§V).
• We present a case study that illustrates the unique perspec-

tive that a platform like Dasu brings to Internet measure-
ment (§VII) and discuss our early experiences sharing it
with third-party experimenters (§VI).

In the following section, we provide further motivation and
point out the goals and challenges of our work. We present
our closing thoughts and some open areas of future work in
Section IX.

II. GOALS AND CHALLENGES

The lack of network and geographic diversity in current In-
ternet experimentation platforms has been long recognized [1],
[2]. Most Internet measurement and system evaluation studies
rely on dedicated infrastructure [7], [12], [13] which in-
clude nodes primarily located in well-provisioned academic
or research networks and are not representative of the larger
Internet — with end-hosts in homes, small businesses and
Internet cafes, connected over DSL, dial-up and cable.

Several research projects have pointed out the implications
this “lack of representativeness” has on efforts to generalize
the results of network measurements and have cast doubts on
the conclusions drawn from evaluations of networked systems
(e.g. [2], [14]–[17]). A comparative analysis of the paths
between PlanetLab nodes and between nodes in residential net-
works illustrates some of these issues. These two sets of paths
have been shown to traverse different parts of the network [11],
exhibit different latency and packet loss characteristics [18],
[19] and result in different network protocol behaviors [20].

We argue that an experimental platform that captures the
network and geographic diversity of the Internet, should be
deployed at end user’s devices, at scale. It should be hosted
at the network edge, to provide visibility into this missing
part of the Internet. To support time-dependent and long-
running experiments, such a platform should also offer (nearly)
continuous availability. Last, it should facilitate the design
and deployment of experiments at the network edge while
controlling the impact on the resources of participating nodes
and the underlying network. Dasu is an experimental platform
designed to match these goals.

Dasu is tailored for Internet network experimentation and,
unlike general-purpose Internet testbeds such as PlanetLab,
does not support the deployment of planetary-scale network
services. Its first instantiation was built as an extension to
the most popular large-scale peer-to-peer system – BitTorrent.
Both strengths and challenges of a platform like Dasu stem
from its inclusion of measurement nodes at the Internet’s
edge. For one, the increased network coverage from these
hosts comes at the cost of higher volatility and leaves the
platform at the “mercy” of end-users’ behaviors. The types
of experiments possible in such a platform depend thus on
the clients’ availability and session times, since these partially

determine the maximum length of experiments that can be
safely assigned to clients. As we show in Sec. V, typical usage
patterns and comparatively long session times of BitTorrent
users means Dasu can attain nearly continuous availability
to launch measurement experiments. Any such platform must
provide a scalable way to share measurement resources among
concurrent experiments with a dynamic set of vantage points.
It must also guarantee the safety of the volunteer nodes
where it is hosted (for instance, by restricting the execution
environment), and ensure secure communication with infras-
tructure servers. Last, to efficiently utilize its vantage points
while controlling the impact that experiments may have on
underlying network and system resources, such a platform
must support coordinated measurements among large numbers
of hosts worldwide, each of which is subject to user interaction
and interference.

These challenges are not bound to Dasu or its current
instantiation but, we argue, are common to any sufficiently
large, network experimentation platform for the Internet’s
edge. Since Dasu’s first deployment, we have developed and
released a stand-alone version of this client and designed
an altogether new platform based on namehelp, an end-host
solution to the tensions between content distribution and public
DNS usage [21].

III. THE COMPLEX EDGE-NETWORK ENVIRONMENT

A key challenge of any experimental platform for the
Internet’s edge is the unmanaged complexity of its vantage
points’ environments. Compared with the managed setting
of typical experimental platforms (e.g., dedicated servers in
academic/research networks, as in Planetlab), the environ-
ments hosting these new platforms’ vantage points can include
multiple networked devices that frequently join and leave the
network and support a handful of users and applications, all
competing for limited computational and network resources.

Among these challenging environments, home networks are
probably among the most complex and their complexity seems
posed to only worsen in the immediate future.3 Considering
this raises as a question on the feasibility of experimentation
platforms for the Internet’s edge, in this section we present
results from an analysis of home networks based on a dataset
of passive and active measurements collected from Dasu
clients over a 6-month period between February 24, 2012 and
August 23, 2012. We use this dataset to characterize home net-
works and device usage, and show that despite their growing
complexity, they offer a sufficiently stable and resource rich
environment to host an edge-network measurement platform.

A. Exploring the complexity of home networks

To analyze the complexity of today’s home networks, we
first measure the number of networked devices typically found
at home. We estimate 4 this by counting the number of devices
found for a subset of ≈4.6K of our clients’ home networks

3http://www.tvtechnology.com/cable,-satellite,-iptv/0149/smart-
connected-devices-shipments-to-exceed–billion-by–says-idc/224955

4This approach could miss devices without –and, potentially, over-count
a few devices with– multiple UPnP services

3

using UPnP –Universal Plug and Play– discovery messages.5

UPnP is a set of networking protocols that allows networked
devices to transparently discover each other and establish
functional network services (data sharing, communications,
and entertainment). During the measurement period, each
client periodically broadcasted UPnP discovery messages and
recorded, for each responding device, the reported information
including the device’s UUID and UDN, device type, model
name and number.

Fig. 1: UPnP-enabled devices in home networks.

Figure 1 shows the histogram of home networks by the
number of UPnP announced devices found. While 34.5% of
sampled home networks have no UPnP devices announcing
their presence, over 65% of them have at least 1 device,
and more than 16% have 3 or more devices. While a first
approximation, these results are sufficient to illustrate the
complexity of today’s home networks, that is, for nearly two-
thirds of locations, we must consider the impact of other
devices on the network.

B. Detecting Cross-traffic

As the number of devices connected to the home network
increases, so does the likelihood that the access link will be
used by multiple devices simultaneously, potentially interfer-
ing with measurement experiments. To detect the presence
of cross traffic from other devices one can leverage UPnP-
enabled gateways, if available. By periodically querying these
gateways for traffic counters across their WAN interface, it is
possible to identify periods when the number of packets or
bytes sent or received is high enough to impact experiments
and simply discard (if passive) or postpone (if active) those
measurements [22] [23].

Considering that the goal of the UPnP protocol is to simplify
the management of home networks, it would not be surprising
to find that the presence of UPnP enabled gateways increases
with the complexity of home networks increases. Our dataset
shows this is indeed the case. Figure 2 presents a histogram
of the prevalence of homes with UPnP-enabled gateways
clustered according to the number of detected devices; the bar
graph show the expected trend with the percentage of UPnP-
enabled gateways increasing from 45% to 81% as the number
of extra devices (i.e., beyond the host) goes from one to four.

5This dataset, as any other, may have some inherent bias but we posit that
Dasu/BitTorrent users can be seen as early adopters and thus, in a sense, offer
a worst-case scenario in terms of the level of complexity in home networks.

Fig. 2: Prevalence of UPnP-enabled gateways in sampled
homes, clustered based on number of UPnP-enabled
devices announced.

Even in environments with a single, unmanaged host, other
applications can generate sufficient cross-traffic to invalidate
results of certain concurrent experiments. To detect traffic
originating from other applications in the same host, one can
rely on netstat, a network statistics tool available in all
major platforms, to capture the number of bytes sent and
received from the host and compare it against the amount of
traffic monitored by our client.

C. Access-link Utilization
The previous paragraphs argues that it is possible to detect

the presence of cross-traffic in the most complex of edge-
network settings, but leave open the question of there being
sufficiently long time periods with sufficiently low or no
cross-traffic to launch experiments. To answer this, we use
data collected between December 2012 and January 2013
from 1,377 different end users and select settings with UPnP-
enabled gateways that properly report traffic counters (≈40%
of them). Using this dataset, we analyze the fraction of time
users are alone in the network and quantify the utilization of
home networks’ access link.

Network utilization is known to vary significantly during a
day. We define the common hour for each user as the median
utilization hour and use this as representative of each user.
To compute the common hour, we measure, for every hour
an individual user is online, the fraction of time in which
the traffic in their access link (captured using UPnP counters)
is higher than that generated by the end host (captured using
netstat) and sort these utilization values in increasing order.
From this, we select the common hour for each user as the
hour over which 50% of sampled-hours fall.

Using this common period, we first look at the fraction
of time the user’s traffic shares the access link with traffic
generated by other devices in the network. Figure 3 shows
that for the common hour over 60% of users see no other
traffic in the network (i.e. they are sole users of the access
link) and for an additional 23% of users the fraction of time
that the link is also utilized by other devices is less than 50%
(<30 minutes).

The figure also shows that for 13% of the users their
common hour have a utilization of 1, which means that in
their representative hour the access-link is always shared with
other devices in the network. We next look at the access-
link utilization for this set of users. For each hour the users

4

Fig. 3: Fraction of time the host machine shares the access-link with
other devices in the network.

(a) Fraction of users with common hour utilization of 1 (access-
link shared with other devices).

(b) All users.

Fig. 4: Fraction of time access-link utilization surpasses various
utilization thresholds, (4a) for users with common hour utilization
of 1, i.e. access-link shared with other devices; (4b) for all users.

are online we compute the fraction of time in which the
utilization of their access-link (captured using UPnP counters)
is higher than different thresholds of their maximum link
capacity (obtained through the use of NDT [24]). Figure 4a
shows the fraction of time the utilization of the access-link
surpasses different utilization thresholds. As the figure shows,
for 35% of these clients, the traffic present in their access-link
never exceeds 50% of their link capacity at the common hour,
and this fraction increases to 48% and 52% if we move our
thresholds to 70% and 90% respectively. These results suggest
that, even for users with high probability of encountering cross
traffic in their network, the utilization of their link still allows
for some measurements.

Finally, we extend this analysis to include every user in our
dataset. The results are depicted in Figure 4b and show that
for 60% of the clients the traffic in their access-link never
exceeds 50% of their link capacity at the common hour, and
that fraction increases to almost 70% when looking at link
capacity of 90%. These results indicate that there is significant
available capacity for running network measurement without
adversely affecting other applications using the network.

Fig. 5: Dasu system components.

We have shown that a measurement platform hosted at end-
users’ devices can effectively detect the presence of cross-
traffic from other applications and devices in the network,
and that there are sufficient opportunities for launching mea-
surement experiments that do not affect nor are affected by
concurrent end-user activity.

IV. DASU DESIGN

The following paragraphs describe Dasu’s design, focusing
on its support for measurement experimentation and partially
guided by the findings reported in our previous section. After
a brief system overview, we describe key system’s components
and the experimentation model they support.

A. System Overview

Dasu is composed of a distributed collection of clients
and a set of management services. Dasu clients provide the
desired coverage and carry on the measurements needed for
broadband characterization and Internet experimentation. The
Management Services, comprising the Configuration, Exper-
iment Administration, Coordination and Data services, dis-
tribute client configuration and experiments and manage data
collection. Figure 5 presents the different components and their
interactions.

Upon initialization, clients use the Configuration Service to
announce themselves and obtain various configuration settings
including the frequency and duration of measurements as
well as the location to which experiment results should be
reported. Dasu clients periodically contact the Experiment
Administration Service, which assigns measurement tasks, and
the Coordination Service to submit updates about completed
probes and retrieve measurement limits for the different exper-
iment tasks. Finally, clients use the Data Service to report the
results of completed experiments as they become available.

B. The Dasu Client

Dasu runs at the edge of the network either as a standalone
client or in the context of a network-intensive hosting ap-
plication. Each client (Fig.6) includes a set of Probe Mod-
ules to passively collect application metrics and run active
measurements. For experimentation, Dasu provides low-level
measurement tools in the form of active probe modules that
can be combined to build a wide range of measurement ex-
periments. Currently available measurement primitives include
traceroute, ping, Network Diagnostic Tool (NDT), HTTP GET

5

and DNS resolution and JavaScript testing support (through
PhantomJS [25]).

In addition to these active measurements, Dasu leverages
the host’s naturally-generated traffic as passive measurements
(particularly in the context of broadband characterization [26])
by continuously monitoring the end-host Internet connection.
This Passive Monitoring module is responsible for collecting
relevant statistics from the host (as described in III-B) as well
as the hosting application if one is being used. Devising an
interface to expose these passively collected measurements to
experimenters is part of future work.

Fig. 6: Dasu client architecture.

C. Experiment Specification

Dasu is designed to facilitate Internet measurement exper-
imentation while controlling the impact on hosts’ resources
and the underlying network. A key challenge in this context
is selecting a programming interface that is both flexible (i.e.,
supports a wide range of experiments) and safe (i.e., does not
permit run-away programs).

Related measurement platforms offer a variety of models
covering the whole spectrum in terms of flexibility and ex-
pressiveness for experiment specification. These models range
from a handful of parameterized commands, as in DIMES
and Looking Glass servers, to a generous subset of a portable
programming language, as in Seattle and Fathom [27]. Given
our goal of supporting measurement experimentation rather
than more general prototype testing and deployment, we opted
instead for a rule-based declarative model for experiment
specification.

In a rule-based model, a rule is a simple when-then
construct that specifies the set of actions to execute when
certain activation conditions hold. A rule’s left-hand side is
the conditional part (when) and states the conditions to be
matched. The right-hand side is the consequence or action
part of the rule (then) i.e., the list of actions to be exe-
cuted. Condition and action statements are specified in terms
of read/write operations on a shared working memory and
invocation of accessor methods and measurement primitives
(modules). A collection of rules form a program and a set of
related programs define an experiment.

Dasu provides experimenters with a set of measurement
modules and a programmable API to combine them. Rules

!
!

Pattern Matcher!

Agenda!

Fire-Rule 3!

Inference Engine!

Fact 1!

Rule 1!

Rule 2!

Rule 3!

Fact 3!

Fact 2!

Fact 4!

Rule Base!

Working Memory!

Execution Engine!

Fig. 7: Rule-based program execution environment.

can be chained together to schedule measurements and handle
results using the available measurement modules, comprising
a measurement experiment. Although the number of measure-
ment modules available is finite, this set is easily extensible by
platform administrators. Primitives are transparently and easily
updated without end user interaction and without the need
to update the base client itself. While this architecture limits
experimenters from implementing their own measurement
primitives, it removes the security and safety issues associated
with providing low-level access to raw sockets or access to
privileged network ports.

The rule-based model provides a clean separation between
experiment logic and state. By imposing strict constraints on
rule syntax, rules can be safely verified through simple static
analysis. In our experience, despite constraints, rules have
proven to be a flexible and lightweight approach for specifying
and controlling experiments. For instance, an experiment to
compare routing asymmetry between commercial and research
networks that examines the paths between the stub (Dasu) and
research (PlanetLab) networks can be specified using only 3
different rules with an average of 24 lines of code per rule.

Tables I and II provide a summary of this API and
the current set of measurement primitives supported.
The API includes some basic accessor methods (e.g.
getClientIps, getDnsServers and getEnvInfo).
The method addProbeTask serves to request the execution
of measurements at a given point in time. Measurements
are invoked asynchronously by the Coordinator, which
multiplexes resources across experiments. Progress and
results are communicated through a shared Working Memory;
through this working memory, an experiment can also chain
rules that schedule measurements and handle results. (Fig. 7).

A Simple Example. To illustrate the application of rules,
we walk through the execution of a simple experiment for
debugging high latency DNS queries. Figure 8 lists the rules
that implement this experiment. When rule #1 is triggered, it
requests a DNS resolution for a domain name using the client’s
configured DNS server. When the DNS lookup completes, rule
#2 extracts the IP address from the DNS result and schedules
a ping measurement. After the ping completes, rule #3 checks
the ping latency to the IP address and schedules a traceroute
measurement if this is larger than 50 ms.

D. Detecting cross-traffic

To detect cross-traffic from other applications in the same
host, Dasu leverages passively collected traffic statistics

6

Method Params. Description
addProbeTask <probe> <params>

[<times>] [<when>]
Submit measurement request of the specified type.

commitResult <report> Submit completed experiment results to data server.
getClientIPs [] Return network information about the client including the

list of IP addresses assigned (both public and private).
getDnsServers [] Return the list of DNS servers configured at the client.
getEnvInfo [] Return information about the plugin and the host node, in-

cluding OS information and types of measurement probes
available to the experimenter.

TABLE I: Dasu API – Methods.

Probe Params. Description
PING <dest-list (IP/name)> Use the local host ping implementation to send

ECHO REQUEST packets to a host.
TRACEROUTE <dest-list (IP/name)> Print the route packets take to a network host.
NDT [<server>] Run the M-Lab Network Diagnostic Tool [24].
DNS [<server>] | [<timeout>] |

[<tcp/udp>] | [<options>] |
<DNS-msg>] | <dest-list>

Submit DNS resolution request to a set of servers.

HTTP [server] | [<port>] |
[<HTTP-Req>] | <url-list>

Submit HTTP request to a a given < host, port > pair.

PhantomJS [url] | [<jsScriptt>] Run functional javaScript tests against a given < url >.

TABLE II: Dasu API – Measurement modules currently supported.

rule "(1) Resolve IP address through local DNS"
when
$fact : FactFireAction(action=="resolveIp");
then
addProbeTask(ProbeType.DNS, "example.com");

end

rule "(2) Handle DNS lookup result"
when
$dnsResult : FactDnsResult(toLookup=="example.com")
then
String ip = $dnsResult.getSimpleResponse();
addProbeTask(ProbeType.PING, ip);

end

rule "(3) Handle ping measurement result"
when
$pingResult : FactPingResult()
then
if ($pingResult.getRtt() > 50)
addProbeTask(ProbeType.TRACEROUTE, $pingResult.ip);

end

Fig. 8: Measurement experiment for debugging high latency DNS
queries.

through the netstat tool, and the relevant signals collected
from the hosting application (BitTorrent) when appropriate.
For networks with UPnP-enabled gateways, Dasu periodically
queries for traffic counters across the access link. While
gateway UPnP traffic counters are not always accurate, such
instances can be easily identified and accounted for. Dasu
employs the technique described by DiCioccio et al. [28]
where UPnP-enabled home gateways are periodically queried
to measure traffic in the home network.

We now present some concrete examples of how traffic
counters from UPnP-enabled gateways allow Dasu to
disambiguate between different scenarios inside the network.
Using data collected from our Dasu users we show how the
presence of internal traffic can be identified and separated
from traffic that uses the access link, both from the local host
and other devices within the network.

Local cross-traffic and no cross-traffic. Figure 9a plots the
upload activity of one Dasu client for a span of 15 hours in

(a) Local cross-traffic (up).

(b) Cross-traffic (down).

Fig. 9: Traffic scenarios within the home network: (9a) local cross-
traffic from other applications and no cross-traffic and (9b) download
cross-traffic.

June 2012. Each of the three signals in the graph represents
the number of downloaded bytes as reported by BitTorrent,
netstat, and the gateway counters, respectively, in intervals
of 30 seconds increment. The figure shows that the client
is solely responsible for all the traffic present in the access
link, but BitTorrent is not the only active application. As
the figure shows, the curves that correspond to the local
netstat counters and the UPnP-counters at the gateway
overlap through the entire collection period (i.e., the client
is the only device using the access link), but the curve that
corresponds to BitTorrent traffic is much lower than that of
netstat for the first five hours (300 minutes) of the session.

7

Cross-traffic from other devices. Figure 9b shows a different
scenario, where there is significant cross-traffic from other
devices in the home network. The figure plots the download
activity seen from a client over a span of five hours. In this
case, there is no BitTorrent content being downloaded (the
BitTorrent signal is a flat horizontal line around 0 bytes), but
there is local traffic being generated by other applications in
the host device. However, for the first ≈ 200 minutes of the
session, the traffic generated by the host devices represents
only a small fraction of the total traffic present in the access
link. The figure also shows the easily identifiable point at
which the cross-traffic disappears.

E. Security and Safety

Safely conducting measurements is a critical requirement
for any measurement platform and particularly for one de-
ployed at the Internet edge. We focus on two areas of se-
curity: protecting the host and the network when executing
experiments. We expand on the former here and discuss the
latter in the following section.

To protect the host, Dasu uses a sandboxed environment
for safe execution of external code, ensures secure communi-
cation with infrastructure servers, and carefully limits resource
consumption.

Experiment Sandbox. To ensure the execution safety of
external experiments, Dasu confines each experiment to a sep-
arate virtual machine, instantiated with limited resources and
with a security manager that implements restrictive security
polices akin to those applied to unsigned Java applets. In addi-
tion, all Dasu experiments are specified as a set of rules that are
parsed for unsafe imports at load time, restricting the libraries
that can be imported. Dasu inspects the experiment’s syntax
tree to ensure that only specifically allowed functionality is
included and rejects a submitted experiment otherwise.

Secure communication. To ensure secure communication
between participating hosts and infrastructure servers, all con-
figuration and experiment rule files served by the Experiment
Administration Service are digitally signed for authenticity and
all ongoing communications with the servers (e.g. for reporting
results) are established over secure channels.

Limits on resource consumption. Dasu carefully controls
the load its experiments impose on the local host, minimizing
the impact that users’ interactions (i.e., with the host and
the application) can have on experiments’ results. The Dasu
client limits consumption of hosts’ resources6 and restricts
the launching of experiments to periods of low resource uti-
lization; the monitored resources include CPU time, network
bandwidth, memory and disk space.

To control CPU utilization, Dasu monitors the fraction of
CPU time consumed by each system component (including
the base system and each different probe module). Dasu
regulates average CPU utilization by imposing time-delays
on the activity of individual probe modules whenever their
“fair share” of CPU time has been exceeded over the previous
monitoring period. Dasu also employs watchdog timers to
control for long-running experiments.

6Currently 15% of any monitored resource.

To control bandwidth consumption, Dasu passively monitors
the system bandwidth usage and launches active measurements
only when utilization is below certain threshold (we evaluate
the impact of this policy on experiment execution time in
Sec. V-C). Dasu uses the 95th percentile of client’s throughput
rates measured by NDT to estimate the maximum bandwidth
capacity of the host and continuously monitors host network
activity. Based on pre-computed estimates of approximate
bandwidth consumption for each probe, Dasu limits probe
execution by only launching those that will not exceed the
predetermined average bandwidth utilization limit. Addition-
ally Dasu relies on a set of predefined limits on the number
of measurement probes of each type that can be launched per
monitored interval. While clients are allowed to dispense with
their entire budget at once, the combined bandwidth consumed
by all probe modules must remain below the specified limit.

To restrict memory consumption, Dasu monitors the al-
located memory used by its different data structures and
limits, for instance, the number of queued probe-requests and
results. Measurement results are offloaded to disk until they
can successfully be reported to the Data Service. Disk space
utilization is also controlled by limiting the size of the different
probe-result logs; older results are dropped first when the pre-
determined quota limits have been reached.

F. Delegating Code Execution to Clients

Dasu manages concurrent experiments, including resource
allocation, via the Experiment Administration Service. As
clients become available, they announce their specific charac-
teristics (such as client IP prefix, connection type, geographic
location and operating system) and request new experiment
tasks. The Experiment Administration (EA) Service assigns
tasks to a given client based on experiment requirements and
characteristics of available clients (e.g. random sample of DSL
users in Boston).

In the simplest of experiments, every Dasu client assigned
to an experiment will receive and execute the same experiment
task (specified as a stand-alone rules file). Dasu also enables
more sophisticated experiments where experimenters specify
which clients to use and how to execute tasks based on client
characteristics.

Dasu adopts a two-tiered architecture for the EA Service,
with a primary server, responsible for resource allocation, and
a number of secondary servers in charge of particular exper-
iments. The Primary EA server acts as a broker, allocating
clients to experiments, by assigning them to the responsible
secondary server, based on clients’ characteristics and resource
availability. The Secondary EA server is responsible for task
parameterization and allocation of tasks to clients according to
the experiment’s logic. While the customized task assigned to
a client is generated by the experiment’s secondary server, all
communication with Dasu clients is mediated by the primary
server who is responsible for authenticating and digitally
signing the assigned experiments. Figure 10 illustrates the
interaction between Dasu clients and the EA Service.

Submitting External Experiments. Dasu supports third-
party experiments through the two-tier architecture described

8

Fig. 10: Interaction between Dasu Clients and the Experiment Ad-
ministration Service.

above. Authorized research groups host their own Secondary
EA server, with security and accountability provided through
the Primary EA server.

In addition to providing a safe environment for execut-
ing experiments, all experiments submitted to Dasu are first
curated and approved by the system administrators before
deployment. This curation process serves as another safety
check and ensures that admitted experiments are aligned with
the platform’s stated goals. In Section VI we discuss our initial
experience sharing the platform with external experimenters.

G. Coordination

In addition to controlling the load on and guaranteeing
the safety of volunteer hosts, Dasu controls the impact that
measurement experiments collectively have on the underlying
network and system resources.

Most existing measurement platforms attempt to indirectly
achieve this goal by limiting the number of probes each
individual measurement node can perform through the use of
local rate limits. This approach prevents a single node from
overwhelming a specific destination, but imposes no limits on
the collective actions of multiple measurement nodes –a large
number of nodes can still probe the same destination at the
same time, effectively causing a (DDoS) attack. The use of
centralized distributed rate limits has been proposed [29] to
achieve this goal where individual measurement nodes are
required to contact a centralized entity before launching a
probe, with the centralized server granting or denying the
probe based on the aggregate system behavior. Aside from
the obvious scalability constraints of such an approach, mea-
surement nodes are left with little independence and end up
becoming simple measurement extensions of the centralized
server.

The challenge of coordinating the behavior of measurement
nodes is compounded in platforms such as Dasu that recruit
the help of ordinary users located at the edge of the network.
On the one hand, such platforms enjoy an almost unlimited
scalability; at the same time, the nodes suffer from reduced
availability and local resource constraints. As such it is neces-
sary to maximize their utilization while still imposing limits on
the number of probes sent. For instance, a simple scheme that
generates a centralized optimal probing schedule for nodes to
follow is not feasible given the lack of control over client’s

availability. Additionally limiting the number of probes and
clients assigned to a specific experiment is almost guaranteed
to yield sub-optimal results as there is no assurance of when
clients will launch the assigned probes (client resources are
limited), or even how many of the assigned probes will actually
be completed (a client might simply disappear in the middle
of an experiment).

To this end, Dasu introduces two new constructs - ex-
periment leases and elastic budgets, to efficiently allow the
scalable and effective coordination of measurements among
potentially thousands of hosts. Our solution efficiently al-
lows the scalable and effective coordination of measurements
among potentially thousands of hosts while providing individ-
ual clients with enough flexibility to act on their own.

Experiment Leases. To support the necessary fine-grained
control of resource usage, we introduce the concept of exper-
iment leases. In general, a lease is a contract that gives its
holder specified rights over a set of resources for a limited
period of time [30]. An experiment lease grants to its holder
the right to launch a number of measurement probes, using the
common infrastructure, from/toward a particular network lo-
cation. Origin and/or targets for the probes can be specified as
IP-prefixes or domain names (other forms, such as geographic
location, could be easily incorporated).

Experiment leases are managed by the EA Service. The
Primary EA server ensures that the aggregated use of resources
by the different experiments is within the specified bounds.
Secondary EA servers are responsible for managing experi-
ment leases to control the load imposed by their particular
experiments. To coordinate the use of resources by the Dasu
clients taking part in an experiment, we rely on a distributed
coordination service [31]. The Coordination Service runs on
well-provisioned servers (PlanetLab nodes) using replication
for availability and performance. Clients receive the list of
coordination servers as part of the experiment description.

Before beginning an experiment, clients must contact a
coordinator server to announce they are joining the experiment
and obtain an associated lease. As probes are launched, the
clients submit periodic updates to the coordination servers
about the destinations being probed. The EA Service uses
this information to compute estimated aggregate load per
destination and to update the associated entries in the exper-
iment lease. Before running a measurement, the Coordinator
checks whether it violates the constraint on the number of
probes allowed for the associated source and destination, and
if so delays it. After a lease expires, the host must request
a new lease or extend the previous one before issuing a new
measurement. The choice of the lease term presents a trade-
off between minimizing overhead on the EA Service versus
minimizing client overhead and maximizing its use.

Elastic Budget. An experiment lease grants to its holder
the right to launch a number of measurement probes (i.e.,
a budget) from/toward a particular network location. Due to
churn and user-generated actions, the number of measurement
probes a Dasu client can launch before lease expiration (i.e.,
the fraction of the allocated budget actually used) can vary
widely. To account for this, Dasu introduces the idea of elastic
budgets that expand and contract based on system dynamics.

9

Elastic budgets are computed by the EA Service and used
to update bounds on experiment leases distributed to Dasu
clients. The EA Service calculates the elastic budget period-
ically based on the current number of clients participating in
the experiment, the number of measurement probes allowed,
assigned and completed by each client. The EA Service uses
this elastic budget to compute measurement probe budgets for
the next lease period for each participating client.

The budget is computed in the following way:

Let,
d, destination
M, aggregate max # probes per unit time to dest d
m, max # of probes per unit time a client will launch
n, # of clients in the experiment
ai, # of probes to dest d assigned to client i
ci, # of probes to dest d completed by client i
pi, completion rate of allowed probes in recent past

Then,

Budget =

{
M/n if M/n < ppm
ppm if M/n > ppm

where,

ppm =

n∑
i=1

pi ∗ f(i)

f(i) =

{
ai − ci if (ai -ci) < m
m if (ai - ci) > m

This approach is well suited for experiments where the
server knows a priori what destinations each client should
probe. In the case of experiments where the destinations to
be probed are not assigned by the server, but obtained by the
clients themselves (through a DNS resolution for example),
the same approach can be used if we conservatively assume
that a client will launch the maximum number of probes per
unit of time whenever it is online.

H. Synchronization

Dasu also provides support for Internet experiments that
require synchronized client operation (e.g. [32], [33]). For
coarse-level synchronization, Dasu clients include a cron-like
probe-scheduler that allows the scheduling of measurements
for future execution. All Dasu clients periodically synchronize
their clocks using NTP. Assuming clients’ clocks are closely
synchronized, an experiment can request the “simultaneous”
launch of measurements by a set of clients. We have found this
to be sufficient to achieve task synchronization on the order
of 1-3 seconds.

For finer-grained synchronization (on the order of millisec-
onds), Dasu adopts a remote triggered execution model. All
synchronized clients must establish persistent TCP connec-
tions with one of the coordination servers. These connections
are later used to trigger clients actions at a precise moment,
taking into account network delays between clients and coor-
dination servers.

Region Penetration Dasu Dasu Total
Total Countries

North America 78.6 % 21.45 % 60 %
Oceania/Australia 67.5 % 3.82 % 6 %
Europe 61.3 % 59.25 % 73 %
L. America/Carib. 39.5 % 1.68 % 65 %
Middle East 35.6 % 1.52 % 73 %
Asia 26.2 % 2.59 % 57 %
Africa 13.5 % 9.66 % 34 %

TABLE III: Internet penetration6 and Dasu coverage (as percentage
of its total population of 100,118) by January 2013.

V. CURRENT DEPLOYMENT

We have implemented Dasu as an extension to a popular
BitTorrent client [34] (publicly available since June 2010)
as well as a standalone client (publicly available since June
2013). The following description and analysis are based on
the BitTorrent extension, as it offers a large and widespread
client population.

To participating users, Dasu provides information about the
service they receive from their ISP [26], [35]. Access to such
information has proven sufficient incentive for widespread
subscription with over 100K users who have adopted our
extension with minimum advertisement.7

This section demonstrates how Dasu clients collectively
provide broad network coverage, sufficiently high availability
and fine-grained synchronization for Internet experimentation.

A. Dasu Coverage

We show the coverage of Dasu’s current deployment in
terms of geography and network topology. Table III lists
broadband penetration in each primary geographic region and
compares these numbers with those from our current Dasu’s
deployment.

Given the high Internet penetration numbers in Europe and
North America, the distribution of Dasu clients per region is
not surprising. Note, however, the penetration of Dasu clients
per region, measured as the percentage of countries covered.
As the table shows, Dasu penetration is over 57% for most
regions and is particularly high for Latin America/Caribbean
(65%) and the Middle East (73%), two of the fastest growing
Internet regions. Even in Africa Dasu penetration reaches 34%.

We also analyze Dasu’s network coverage in terms of ASes
where hosts are located. With our existing user-base at the
end of July 2013, we have Dasu clients in 2,431 different
ASes. We classify these ASes following a recently proposed
approach [36], as follows:

• Tier-1: 11 known Tier-1s
• LTP: Large (non tier-1) transit providers and large (global)

communications service providers
• STP: Small transit providers and small (regional) commu-

nication service providers
• Eyeball: Enterprise customers or access/hosting providers

7Upon download, users are informed of both roles of Dasu. Users can, at
any point, opt to disable experiments from running and/or reporting perfor-
mance information, without losing access to Dasu’s broadband benchmarking
information.

6http://www.internetworldstats.com

10

Tier1&
2%&

LTP&
5%&

STP&
47%&

Eyeball&
46%&

(a) Peer Distribution

Tier1&
1%&

LTP&
1%&

STP&
25%&

Eyeball&
73%&

(b) AS Distribution

Fig. 11: Distribution of Dasu peers per AS (left). Distribution of ASes
covered by Dasu peers (right).

Fig. 12: Number of online Dasu clients over a 24-hour
period. The fraction ranges from 39-44% of the total
number of unique users, on average.

Fig. 13: Session time distribution of Dasu clients (time
between their joining and leaving the system).

Figure 11a uses this classification to illustrate where Dasu
peers are deployed. As the figure shows, 93% of Dasu peers
are located in small transit providers and eyeball ASes; with
only minimal presence in large transit and Tier-1 providers.
Figure 11b presents the distribution of all the ASes covered by
Dasu peers. This figure shows that 73% of the ASes covered
by Dasu are eyeball ASes, highlighting the effectiveness of
Dasu as a platform for capturing the view from the network
edge.

B. Dasu Dynamics

In this section, we show that the churn from Dasu clients is
sufficiently low to support meaningful experimentation. This
churn is a result of both the volatility of Dasu’s current
hosting application (i.e. BitTorrent) and that of the end systems
themselves. In the following analysis, we focus on the hosting
application dynamics. In particular, we investigate what por-
tion of clients are online at any moment, and whether their
session times support common measurement durations.

First, we analyze Dasu clients’ availability, using the per-
centage of clients online at any given hour over a 31-day

period. Figure 12 plots this for the month of January 2013.
The fraction of available clients during the period varies, on
average, between 39% and 44% of the total number of unique
users seen during a day, with a total of 1,473 active unique
users for the month. 7. With respect to the overall stability of
the platform, for the same month of January 2013, we saw
a total of 1,303 installs, 61 user uninstalls and 21 users who
disabled reporting while continuing to run Dasu.

Next, we analyze how the duration of experiments is lim-
ited by client session times. Session time is defined as the
elapsed time between it joining the network and subsequently
leaving it. The distribution of clients’ session times partially
determines the maximum length of the measurement tasks that
can be “safely” assigned to Dasu clients. Figure 13 shows
the complementary cumulative distribution function of session
times for the studied period. The distribution is clearly heavy-
tailed, with a median session time for Dasu clients of 178
minutes or ≈ 3 hours.

Given an average session time, the fraction of tasks that
are able to complete depends on the duration of the task –
a function of the number of actual measurements and the
load at the client. To evaluate the impact of typical client
load conditions on task completion times, we designed a
controlled experiment in the context of the IXP mapping case
study described in Sec. VII, consisting of a fixed number of
traceroutes issued by clients to discover potential peerings.
The experiment was designed in such a way that given ideal
client conditions (sufficiently low CPU and bandwidth load)
the minimum time required by any Dasu client to complete
it would be ≈75 seconds (1.25 minutes); this time would
serve as a reference point when comparing against completion
times under typical client conditions. For this purpose, we
selected a random set of Dasu clients over a one week period
in August 2013 and assigned such tasks multiple times during
that period. Figure 14 shows a cumulative distribution function
of the median task completion time from 164 different clients
that completed 10 or more such tasks during that period. The
figure shows how for 90% of the Dasu clients the median task
successfully completes in < 150 seconds with 50% of clients
completing the task in less than 120 seconds (2 minutes).

Now we look at the fraction of assigned tasks to Dasu clients
that are successfully completed. Given that we have no control
over clients’ availability or disconnection times, only a fraction
of assigned tasks will be successfully completed. To perform
this analysis we look at the tasks assigned to 349 different
Dasu clients over a 2-week period in the month of August
2013, taking only into account clients who were assigned
5 tasks or more during that period. Figure 15 shows the
complementary cumulative distribution function of the fraction
of successfully completed tasks from those assigned to each
client. The plot shows that a large fraction of clients are able to
complete the majority of assigned tasks in the face of churn
with 60% of clients completing 80% or more of the tasks
assigned to them.

7The actual number of users changes drastically from day to day (and
hour to hour). This is in part due to the nature of this new type of platforms,
running on volunteer, regular Internet users’ machines and in part due to the
particular hosting application we rely on for our first instantiation (BitTorrent).

11

Fig. 14: CDF of median task completion times for tasks com-
pleted by Dasu clients. For 90% of the clients, the median task
successfully completes in < 150 seconds (2.5 minutes).

Fig. 15: CCDF of fraction of successfully completed tasks from
those assigned. 60% of Dasu clients complete 80% or more of
the tasks assigned to them.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

fra
ct

io
n

of
 p

ee
rs

fraction of probes

80% upload
80% download

70% upload
70% download

60% upload
60% download

download
upload

Fig. 16: Distribution of fraction of probes per peer that are delayed
due to bandwidth constraints at the client.

C. Controlling Experimentation Load

To minimize Dasu’s impact on host application performance
and to ensure that user interactions do not interfere with
scheduled measurements, Dasu enforces pre-defined limits on
the number of probes executed per unit time and schedules
measurements during low utilization periods. We evaluate the
impact of one of these restrictions (on bandwidth utilization)
on experiment execution by determining the portion of sched-
uled measurements delayed.

Figure 16 shows a CDF of the fraction of probes delayed by
clients due to different bandwidth utilization constraints (60%,
70% and 80%), taken from a random subset of clients over
a two-week period. The distribution shows, for instance, that
capping at a download utilization of 80%, every scheduled
probe can be launched immediately for 85% of the peers, and
that for 98% of the peers less than 20% of the probes would
require any delay. In contrast, a smaller fraction of probes
(60%) experience no delay when an 80% utilization limit

Fig. 17: CDF of median probe queue time for clients. For 30% of the
clients, the median probe is launched < 1sec. after being scheduled;
with 60% of clients launching probes within 30 seconds of being
scheduled.

is imposed on the upload direction. This is expected, since
broadband users are often allocated lower upload bandwidth
than download.

Finally, we look at the amount of time probes are queued
by the clients under typical load conditions from the moment
they are requested until launched. Fig. 17 shows the queueing
time of probes assigned to 186 Dasu clients for a given
experiment over a 1-week period in July 2013. The figure
plots the cumulative distribution function of the median probe-
queue time on a per client basis for clients with at least 20
launched probes. The figure shows that for 30% of the clients,
the median probe is launched < 1sec. after being scheduled;
with 60% of clients launching probes within 30 seconds of
being scheduled.

D. Client Synchronization

To evaluate the granularity of Dasu’s fine-grain synchroniza-
tion capabilities, we run an experiment where Dasu clients
were instructed to simultaneously launch an HTTP request
to an instrumented web server. For a span of five minutes,
approximately 30 clients were recruited to cooperate in the
experiment. Following Ramamurthy et al. [32], as clients
joined the experiment they were instructed to measure their
latency to the target server as well as to the Coordination
Server and to report back their findings.

At the end of the five minutes, clients were scheduled
to launch their measurements (having adjusted each request
based on their measured latencies) while we logged the arrival
times of each incoming HTTP request at the target server. We
repeated this experiment 10 times. Figure 18 shows the mean
arrival time of each request with a crowd size of 31 clients.
About 80% of the requests arrive within 300ms of each other,
and 91% of the requests arrive within 1s of each other. While
Ramamurthy et al. [32] shows smaller synchronization times
are achievable with this technique, Dasu’s higher numbers
are due to the ultra-conservative, yet not fundamental, limits
we impose on the load Dasu adds to hosting nodes (which
results on delayed probe scheduling depending on the host’s
load and activity). While we have not found our resulting
synchronization granularity to be a limitation for any of the
experiments deployed so far, we plan to revisit these self-
imposed limits as part of future work.

12

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30

R
eq

ue
st

 A
rri

va
l T

im
e

(m
illi

se
co

nd
s)

Client Request Index

Fig. 18: Request arrival times at the target server. Approximately 80%
of requests arrive within 300 ms.

VI. THIRD-PARTY EXPERIMENTERS

Dasu has been available to external researchers since
April 2013. Through the two-tiered architecture described
in Sec. IV-F, we have already engaged with a handful of
external groups that have or are using Dasu for their mea-
surement experiments. Their projects, with goals that range
from evaluating congestion control mechanisms in the wild, to
discovering the physical connectivity between interconnected
ASes in a geographic-aware manner, all share the need for a
large and diverse set of vantage point locations.

To enable external researchers to engage Dasu clients in
their experiments, two different secondary EA servers are
shared with each group: a Secondary EA, responsible for
task parameterization and client allocation, and a Secondary
EA dataColector, responsible for collecting and storing exper-
iments’ results. External experimenters modify the Secondary
EA servers to implement the logic required by their particular
experiment setup. Secondary EA serves interact with the
Primary EA which is responsible for allocating clients across
projects, authenticating and signing the assigned experiments.

These two-tier architecture provides experimenters sufficient
flexibility and control over their experiments, while remaining
simple and sufficiently scalable for the class of experiments we
have deployed. The experiment curation model it implements
–where each and every experiment must be approved by
the system administrators– has allowed us to safely explore
the sharing of our platform with external groups but has
also proven to be its largest scalability roadblock. Exploring
alternative models for sharing large-scale, platforms running
at the Internet’s edge is an interesting avenue for future work.

VII. CASE STUDY OF A PLATFORM AT THE INTERNET’S
EDGE

In this section, we present a concrete case study that
illustrates the unique perspective a programmable, edge-based
platform with a wide-spread and diverse set of vantage points
brings to Internet measurement. Additional case studies can
be found in [37].

A. Evaluating a Recently-proposed DNS Extension

The edns-client-subnet EDNS0 extension (ECS) was devel-
oped to address the problems raised by the interaction between
the DNS-based redirection techniques commonly employed

by CDNs and the increasing use of remote DNS services.
CDNs typically map clients to replicas on the location of
the client’s local resolver; since the resolvers of remote DNS
services may be far from the users, this can result in reduced
CDN performance. ECS aims to improve the quality of CDN
redirections by enabling the DNS resolver to provide partial
client location (i.e. client’s IP prefix) directly to the CDN’s
authoritative DNS server. ECS is currently being used by
a few public DNS services (e.g., Google DNS) and CDNs
(e.g. EdgeCast) and can improve CDN redirections without
modifications to end hosts.

The value of Dasu. To understand the performance benefits
of the proposed ECS extension and capture potential variations
across geographic regions would require access to a large set
of vantage points. These vantage points should be located
in access networks around the world and allow issuing the
necessary interrelated measurement probes. These are some
of the unique features that Dasu offers.

Dasu’s extensibility allows for the creation and addition
of a new probe module to generate and parse ECS-enabled
DNS messages. Additionally, Dasu’s user base allows us
to obtain representative measurement samples from diverse
regions and compare trends across geographic areas by looking
at the relationships between raw CDN performance, relative
proportions of clients affected by the extension, and the degree
of performance improvement provided by the extension. 8

Experiment setup. This experiment extends the work by
Otto et al. [21], which examined the impact of varying the
amount of information shared by ECS (i.e. prefix length) and
compared its performance to a client-based solution. We first
obtain CDN redirections to edge servers both with the ECS
extension enabled and disabled. Specifically, we query Google
DNS (8.8.8.8) for an EdgeCast hostname. To obtain a redirec-
tion with ECS disabled, our DNS probe module sends a query
with the ECS option that specifies 0 bytes of the client’s IP
prefix—this effectively disables the extension’s functionality.
For the ECS-enabled query, we provide the client’s /24 IP
prefix. After obtaining CDN edge server redirections with
and without ECS’s help, we conduct HTTP requests to both
sets of CDN edge servers to measure the application-level
performance in terms of latency to obtain the first byte of
content. For the results from each client, we compare the
median performance with and without ECS being enabled.

Results. We analyze results from a subset of 1,185 Dasu
clients that conducted this experiment over a 4 month period
from September 12th, 2011 to January 16th, 2012.9 Figure 19
shows the relationship between HTTP latency with ECS
disabled and the performance benefits (latency savings) with
ECS enabled. We classify users by geographic region; the
percentages listed in the legend indicate the fraction of all
sampled clients from that region. In all regions, sampled
clients are located in a diverse set of networks; even in
Oceania—the region with fewest clients—we cover 9 ISPs in
Australia and 4 in New Zealand. The figure plots the subset

8To the best of our knowledge, of the existing platforms, the Seattle
testbed is the only other platform one could potentially use to carry out this
particular experiment, albeit with a different user footprint.

9Each participating client runs the experiment once over that time.

13

20 50 100 200 500 1000 2000 5000 10000
HTTP latency without ECS (ms)

0
10
20
30
40
50
60
70
80
90

100

La
te

nc
y

sa
vi

ng
s

w
ith

 E
C

S
(%

)

N. America (41.9%)
Asia (6.8%)
E. Europe (5.2%)
W. Europe (37.6%)
Oceania (4.4%)

Fig. 19: HTTP latency vs. the performance benefits provided by
ECS, by geographic region. Percentages in the legend indicate the
geographic composition of the dataset.

of samples in which EDNS impacted HTTP performance.
While we find clients in all these regions that obtained

HTTP performance improvements with ECS enabled, the sam-
ples tend to cluster by region. Although clients in North Amer-
ica and Western Europe both typically see HTTP latencies
between 20 and 200 ms, the North American clients generally
obtain higher percentage savings. This would indicate that the
CDN’s infrastructure in North America is relatively dense in
comparison to that of the public DNS service’s deployment.
Clients in Oceania typically have relatively high HTTP la-
tencies between 200 and 1000 ms with ECS disabled—but
commonly realize savings of 70–90% with ECS enabled. This
is likely a result of the specific deployments of the CDN
and DNS services; although there are actually CDN edge
servers near to clients in this region, it appears that the
nearest Google DNS servers are farther away, resulting in
reduced HTTP performance when ECS is disabled. Finally, we
compare the number of clients with benefits from ECS between
Eastern Europe and Oceania; while clients in Oceania actually
comprise a slightly smaller fraction of the overall sample, the
number of clients that actually observed better performance is
much higher than for clients in Eastern Europe.

VIII. RELATED WORK

Our work shares goals with and builds upon ideas from
several prior large-scale platforms targeting Internet experi-
mentation. In the following paragraphs we review some of
these projects and key ideas, structuring our discussion around
the platform incentive model for adoption. We then describe
key differences with network measurement platforms whose
vantage points are located in stub and commercial networks
as these share some common characteristics and challenges as
our architecture.

In platforms relying on a cooperative model for adoption, an
experimenter interested in using the system must first become
part of it. Systems built using this model largely assume that
the goals of those hosting the platform and the experimenters
that use it are aligned. Not surprisingly, the majority of these
platforms’ nodes belong to well-provisioned and supported
academic or research (GREN) networks. Examples of systems
that follow this model include PlanetLab [7], RIPE Atlas [8]
and DipZoom [4].

Alternatively, in measurement platforms that follow an al-
truistic model, participants join the platform for the betterment
of science. Ark [12], RON [13], Scriptroute [38], and public
looking-glass traceroute servers (LG) are all examples of this
type of platform, albeit ones hosted on nodes located in well-
provisioned networks. On the other side of the spectrum are
platforms that still follow the same model but rely on the help
of ordinary users located at the edge of the network. Such plat-
forms include DIMES [5], SatelliteLab [3], NETI@home [39]
and Seattle [6]. We concentrate on the latter because they share
similar challenges/characteristics to those of Dasu.

NETI@home for example, passively collects network per-
formance statistics from end-systems. SatelliteLab, on the
other hand, looks to improve the heterogeneity of testbeds
by subjecting traffic to network conditions that would be
experienced if the applications were run on the volunteers’
hosts, without them having to actually contribute any re-
sources for code execution. DIMES, probably the closest
in spirit to our implementation, aims to gather topological
information on the Internet. To achieve this goal, agents of
the platform only require a limited subset of measurement
tools (TCP/UDP/ICMP ping/traceroutes, Paris Traceroute) and
don’t require a high degree of programmability or fine-grain
coordination capabilities. Finally, the Seattle research and ed-
ucational testbed provides rapid prototyping and measurement
capabilities using resources provided by end users on their
existing devices. Given its original goal as an educational
testing platform, Seattle supports a very flexible language
for experiment specification based on a restricted subset of
Python. Considering our goal of supporting measurement
experimentation and our intended hosting environment, we
opted for explicitly excluding the execution of arbitrary code,
defining a well-structured module-based form of extensibility,
a restricted rule-based language for experiment specification,
and a new model for defining and deploying experiments, and
controlling their aggregated impact.

IX. CONCLUSION

We presented Dasu, a measurement experimentation plat-
form for the Internet’s edge. Dasu reaches the network edge
by explicitly aligning the objectives of the experimenters
with those of the users hosting the platform, supporting
both network measurement experimentation and broadband
characterization. We discussed some of the challenges we
faced building and using a platform for the Internet’s edge,
described its design and implementation, and illustrated the
unique perspective its current deployment brings to Internet
measurement.

Dasu represents but a single point in a large design space.
We described our rational for our current design choices, but
expect to revisit some of these decisions as we learn from
our own and other experimenters’ use of the platform. For
instance, while Dasu’s two-tiered architecture has been effec-
tive for sharing system resources across several experiments
and external groups, we are facing the scalability limitations
of our experiment curation model and leave the investigation
of alternatives (e.g., such as those described in [40]) as part

14

of future work. Other interesting research directions include
extending the platform beyond a single implementation that
relies on a single incentive for adoption and integrating it
with more traditional and stable experimental platforms like
PlanetLab. Finally, determining the class of experiments that,
while feasible, may be inappropriate for a platform hosted by
end users (e.g., censorship monitoring) remains to be explored.

The Dasu client is open source and available for download
from http://aqualab.cs.northwestern.edu/projects/Dasu.

X. ACKNOWLEDGMENTS

We would like to thank Lorenzo Alvisi, Rebecca Isaacs,
Aaditeshwar Seth and the anonymous reviewers for their
invaluable feedback. We are always grateful to Paul Gardner
for his assistance with Vuze and the many users of our
software.

This research was supported in part by the National Science
Foundation through Awards CNS 1218287, CNS 0917233
and II 0855253 and by a Google Faculty Research Award.

REFERENCES

[1] N. Spring, L. Peterson, A. Bavier, and V. Pai, “Using PlanetLab for
network research: Myths, realities and best practices,” ACM SIGOPS
Op. Sys. Rev., 2006.

[2] M. Casado and T. Garfinkel, “Opportunistic measurement: Spurious
network events as a light in the darkness,” in Proc. of HotNets, 2005.

[3] M. Dischinger, A. Haeberlen, I. Beschastnikh, K. P. Gummadi, and
S. Saroiu, “SatelliteLab: Adding heterogeneity to planetary-scale net-
work testbeds,” in Proc. of ACM SIGCOMM, 2008.

[4] M. Rabinovich, S. Triukose, Z. Wen, and L. Wang, “Dipzoom: The
Internet measurements marketplace,” in Proc. IEEE INFOCOM, 2006.

[5] Y. Shavitt and E. Shir, “DIMES: Let the Internet measure itself,”
SIGCOMM Comput. Commun. Rev., vol. 35, no. 5, October 2005.

[6] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson, “Seattle:
a platform for educational cloud computing,” in Proc. of the 40th ACM
technical symposium on Computer science education, ser. SIGCSE ’09,
2009.

[7] PlanetLab, “An open platform for developing, deploying, and accessing
planetary-scale services,” Jul. 2013, accessed: 2013-07-26. [Online].
Available: http://www.planet-lab.org/

[8] RIPE, “RIPE atlas,” May 2013, accessed: 2013-05-21. [Online].
Available: http://atlas.ripe.net/

[9] Keynote, “Internet health report,” Jan. 2013, accessed: 2013-01-7.
[Online]. Available: http://internetpulse.net/

[10] FCC, “Broadband network management practices – en banc pub-
lic hearing,” February 2008, http://www.fcc.gov/broadband network
management/hearing-ma022508.html.

[11] K. Chen, D. R. Choffnes, R. Potharaju, Y. Chen, F. E. Bustamante,
D. Pei, and Y. Zhao, “Where the sidewalk ends: extending the Internet
AS graph using traceroutes from P2P users,” in Proc. ACM CoNEXT,
2009.

[12] Caida, “Ark,” Jul. 2013, accessed: 2013-07-26. [Online]. Available:
http://www.caida.org/projects/ark/

[13] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” in Proc. ACM SOSP, 2001.

[14] J. Ledlie, P. Gardner, and M. Seltzer, “Network coordinates in the wild,”
in Proc. of USENIX NSDI, 2007.

[15] D. R. Choffnes and F. E. Bustamante, “Pitfalls for testbed evaluations
of Internet systems,” SIGCOMM Comput. Commun. Rev., April 2010.

[16] R. Zhang, C. Tang, Y. C. Hu, S. Fahmy, and X. Lin, “Impact of the
inaccuracy of distance prediction algorithms on Internet applications:
an analytical and comparative study,” in Proc. IEEE INFOCOM, 2006.

[17] H. Pucha, Y. C. Hu, and Z. M. Mao, “On the impact of research network
based testbeds on wide-area experiments,” in Proc. of IMC, 2006.

[18] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and
D. Wetherall, “Improving the reliability of Internet paths with one-hop
source routing,” in Proc. USENIX OSDI, 2004.

[19] D. R. Choffnes, M. A. Sánchez, and F. E. Bustamante, “Network
positioning from the edge: an empirical study of the effectiveness of
network positioning in P2P systems,” in Proc. IEEE INFOCOM, 2010.

[20] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu, “Charac-
terizing residential broadband networks,” in Proc. of IMC, 2007.

[21] J. S. Otto, M. A. Sánchez, J. P. Rula, and F. E. Bustamante, “Content
Delivery and the Natural Evolution of DNS: remote dns trends, perfor-
mance issues and alternative solutions,” in Proc. of IMC, 2012.

[22] L. DiCioccio, R. Teixeira, and C. Rosenberg, “Measuring and charac-
terizing home networks,” in Proc. ACM SIGMETRICS, 2012.

[23] L. DiCioccio, R. Teixeira, and Rosenberg, “Characterizing home net-
works with HomeNet Profiler,” Technicolor, Tech. Rep., 09 2011, cP-
PRL-2011-09-0001.

[24] MLabs, “Network diagnostic tool,” Jun. 2013, accessed: 2013-06-6.
[Online]. Available: http://www.measurementlab.net/run-ndt/

[25] A. Hidayat, “Phantomjs,” http://phantomjs.org.
[26] Z. S. Bischof, J. S. Otto, M. A. Sánchez, J. P. Rula, D. R. Choffnes, and

F. E. Bustamante, “Crowdsourcing ISP characterization to the network
edge,” in Proc. of W-MUST, 2011.

[27] M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. Allman, N. Weaver,
and V. Paxson, “Fathom: A browser-based network measurement plat-
form,” in Proceedings of the 2012 ACM Conference on Internet Mea-
surement Conference, ser. IMC ’12. ACM, 2012.

[28] L. DiCioccio, R. Teixeira, M. May, and C. Kreibich, “Probe and pray:
Using UPnP for home network measurements,” in Proc. of PAM, 2012.

[29] Z. Wen, S. Triukose, and M. Rabinovich, “Facilitating focused internet
measurements,” in Proceedings of the 2007 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, ser. SIGMETRICS ’07. New York, NY, USA: ACM, 2007,
pp. 49–60. [Online]. Available: http://doi.acm.org/10.1145/1254882.
1254889

[30] C. G. Gray and D. R. Cheriton, “Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency,” in Proc. ACM SOSP,
1989.

[31] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: wait-free
coordination for Internet-scale systems,” in Proc. USENIX ATC, 2010.

[32] P. Ramamurthy, V. Sekar, A. Akella, B. Krishnamurthy, and A. Shaikh,
“Remote profiling of resource constraints of web servers using mini-
flash crowds,” in Proc. USENIX ATC, 2008.

[33] A.-J. Su, D. Choffnes, A. Kuzmanovic, and F. Bustamante, “Drafting
behind Akamai: Travelocity-based detouring,” in Proc. of ACM SIG-
COMM, Sep. 2006.

[34] Vuze, “Vuze,” Jul. 2013, accessed: 2013-07-26. [Online]. Available:
http://www.vuze.com/

[35] SamKnows, “Accurate broadband information for consumers,
governments and ISPs,” Jul. 2013, accessed: 2013-07-26. [Online].
Available: http://www.samknows.com/

[36] A. Dhamdhere and C. Dovrolis, “Ten years in the evolution of the
Internet ecosystem,” in Proc. of IMC, 2008.

[37] M. A. Sánchez, J. S. Otto, Z. S. Bischof, D. R. Choffnes, F. E. Busta-
mante, B. Krishnamurthy, and W. Willinger, “Dasu: Pushing experiments
to the Internet’s edge,” in Proc. of USENIX NSDI, 2013.

[38] N. Spring, D. Wetherall, and T. Anderson, “Scriptroute: a public Internet
measurement facility,” in Proc. USENIX USITS, 2003.

[39] C. R. Simpson, Jr and G. F. Riley, “NETIhome: A distributed approach
to collecting end-to-end network performance measurements,” in Proc.
of PAM, 2004.

[40] J. Cappos, A. Dadgar, J. Rasley, J. Samuel, I. Beschastnikh, C. Barsan,
A. Krishnamurthy, and T. Anderson, “Retaining sandbox containment
despite bugs in privileged memory-safe code,” in Proceedings of the
17th ACM Conference on Computer and Communications Security, ser.
CCS ’10. ACM, 2010.

15

Mario A. Sánchez received his M.S. and Ph.D.
degrees in computer science from Northwestern Uni-
versity in 2014 and 2011, respectively. He holds
a Master of Science degree in Telecommunications
from the University of Maryland at College Park
and a B.E. in Telecommunications from Pontificia
Universidad Católica Madre y Maestra (Dominican
Republic).

Mario joined HP Labs, Palo Alto as a research
scientist in the fall of 2014 . His research in-
terests include experimental computer systems and

networking, with a current focus on Internet measurements and distributed
systems. He is a former recipient of the Fulbright scholarship.

John S. Otto was born in Atlanta, Georgia, in
1985. He received the B.S. degree in computer
science from Northwestern University, Evanston, IL,
in 2007, the M.S. in computer science from North-
western in 2011 and the Ph.D. degree in computer
science from Northwestern in 2013.

From 2007 to 2014, he was a Research Assistant
at Northwestern University. In summer 2010 he
interned at Telefónica I+D and in summer 2011 he
interned at AT&T Labs–Research. Since 2014, he
has been a Software Engineer at Google in Chicago,

IL. His research interests include the economic and performance trade-offs
between approaches for Internet-based content distribution.

Zachary S. Bischof received his B.S. and M.S.
degrees from Northwestern University in Evanston,
IL, in 2009 and 2013, respectively. He is currently a
PhD candidate at Northwestern University working
with Prof. Fabián Bustamante. His research inter-
ests focus on developing and evaluating large-scale
distributed systems and characterizing broadband
services and how they affect user behavior.

Fabián E. Bustamante received his M.S. and Ph.D.
degrees in computer science from the Georgia In-
stitute of Technology in 1997 and 2001. Before
joining Georgia Tech, he studied and taught at the
Universidad Nacional de La Patagonia San Juan
Bosco (Argentina), from which he received both a
3-year and a 5-year-and-project degrees in computer
science. He is currently a Full Professor in the
Department of Electrical Engineering and Computer
Science at Northwestern University. His research
interests span several areas of experimental systems,

with a focus on networks and distributed computing. Prof. Bustamante serves
in the Editorial Board of the IEEE/ACM Transactions on Networking, the
ACM SIGCOMM Computer Communication Review and the IEEE Internet
Computing. He is also the chair of the steering committee of the IEEE
Peer-to-Peer conference, was the co-chair for SIGCOMM 2014 and is an
active member of the program committees of SIGCOMM, IMC, CoNEXT and
ICDCS, among others. Prof. Bustamante is a senior ACM member, a member
of USENIX and the IEEE, a recipient of the National Science Foundation
CAREER award and the Science Foundation of Ireland E.T.S. Walton Visitor
Award.

David Choffnes received the B.A. degree from
Amherst College, Amherst, MA, in 2002, and the
M.S. and Ph.D degrees from Northwestern Univer-
sity, Evanston, IL, in 2006 and 2010, respectively.
He was a postdoc at the University of Washington
as an NSF/CRA Computing Innovations Fellow and
was also supported by a Google Research Award.

David Choffnes is currently an assistant professor
in the College of Computer and Information Science
at Northeastern University, where he started in 2013.
His research interests are primarily in the areas of

distributed systems and networking, with a recent focus on mobile systems.

Balachander Krishnamurthy is presently a lead member of technical staff
at AT&T Labs–Research. His focus of research is in the areas of Internet
privacy, Online Social Networks, and Internet measurements. He co-founded
the successful ACM SIGCOMM Internet Measurement Conference and more
recently the first ACM Conference on Online Social Networks (cosn.acm.org).
He has been on the thesis committee of several PhD students, and has
collaborated with over seventy five researchers worldwide. Bala’s papers can
be found at http://www.research.att.com/˜bala/papers

Walter Willinger is Chief Scientist at Niksun, Inc.,
Princeton, NJ. Before joining Niksun, he worked at
AT&T Labs–Research in Florham Park, NJ (1996-
2013) and at Bellcore Applied Research in Mor-
ristown, NJ (1986-1996). He received the Diplom
(Dipl. Math.) from the ETH Zurich and his M.S.
and Ph.D. degrees from the School of ORIE, Cornell
University, Ithaca, NY. He is a Fellow of ACM,
IEEE, and SIAM, an AT&T Fellow, and co-recipient
of the 1995 IEEE Communications Society W.R.
Bennett Prize Paper Award, the 1996 IEEE W.R.G.

Baker Prize Award, and the 2005 ACM/Sigcomm Test-of-Time Paper Award.
His paper “On the Self-Similar Nature of Ethernet Traffic” is featured in “The
Best of the Best - Fifty Years of Communications and Networking Research”,
a 2007 IEEE Communications Society book compiling the most outstanding
papers published in the communications and networking field in the last half
century.

