
Scalable Directory Services Using Proactivity

Fabián E. Bustamante, Patrick Widener and Karsten Schwan
�

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332, USA�

fabianb, pmw, schwan � @cc.gatech.edu

Abstract

Common to computational grids and pervasive comput-
ing is the need for an expressive, efficient, and scalable
directory service that provides information about objects
in the environment. We argue that a directory interface
that ‘pushes’ information to clients about changes to ob-
jects can significantly improve scalability. This paper de-
scribes the design, implementation, and evaluation of the
Proactive Directory Service (PDS). PDS’ interface supports
a customizable ‘proactive’ mode through which clients can
subscribe to be notified about changes to their objects of
interest. Clients can dynamically tune the detail and granu-
larity of these notifications through filter functions instanti-
ated at the server or at the object’s owner, and by remotely
tuning the functionality of those filters. We compare PDS’
performance against off-the-shelf implementations of DNS
and the Lightweight Directory Access Protocol. Our evalu-
ation results confirm the expected performance advantages
of this approach and demonstrate that customized notifica-
tion through filter functions can reduce bandwidth utiliza-
tion while improving the performance of both clients and
directory servers.

1. Introduction

Innovative and widely distributed applications are en-
abled by infrastructure layers that allow distributed re-
sources and services to be pooled and managed as though
they were locally available. Advances in communication
technologies and the proliferation of computing devices
have made this possible; two such types of infrastructures
are pervasive computing environments [11, 15] and compu-
tational grids [39, 16, 13]. An important component of both
types of infrastructures is a directory service that provides
information about different objects in the environment, such

�
0-7695-1524-X/02 $17.00 (c) 2002 IEEE

as resources and people, to applications and their users.
Well-known examples of such services are the Metacomput-
ing Directory Service (MDS) [12] for Globus-based envi-
ronments, and the Intentional Naming System (INS) [1] for
applications developed in the Oxygen [22] pervasive com-
puting project. Directory services in both types of environ-
ments must support sophisticated object descriptions and
query patterns, operate in highly dynamic environments,
and scale to an increasingly large number of objects and
users.

Traditional directory services have been designed
for fairly static environments, where updates are rare
(DNS [23], LDAP [43], and X.500 [29]). Recent work has
addressed the issues of expressiveness of their object de-
scriptions and query languages (through attribute-value hi-
erarchies [1], for example) and considered their scalability
(through domain-based partitioning or hierarchical organi-
zation [1, 8, 9, 33]). However, these directory services rely
on traditional “inactive” interfaces, where clients interested
in the values of certain objects’ attributes must explicitly
request such information from the server. Czajkowski et
al. [8] demonstrate that it is feasible to satisfy widely differ-
ent information service requirements with a single, consis-
tent framework. Their example applications range from tra-
ditional service discovery with relatively static mappings to
superschedulers and application adaptation monitors, where
objects and their attributes change at fast and unpredictable
rates and fresh information is crucial to clients’ functional-
ity. In such scenarios, clients in need of up-to-date informa-
tion have no alternative but to query servers at rates that (at
least) match those at which changes occur.

In this paper, we argue that an exclusively inactive in-
terface to directory services can hinder server scalability
and indirectly restrict the behavior of potential applica-
tions [32]. We propose to extend directory services’ inter-
faces with a proactive mode by which clients can express
their interest in, and be notified of, changes in the environ-
ment. A potential drawback of proactivity is the clients’
loss of control of the frequency and type of notifications.

To address this, we propose the client-specific customiza-
tion of notification channels through simple functions that
are shipped and efficiently executed at the notifications’
sources.

To validate our approach, we have designed and imple-
mented the Proactive Directory Service (PDS) [4]. PDS is
an efficient and scalable information repository with an in-
terface that includes a proactive, push-based, access mode.
Through this interface, PDS clients can learn of objects (or
types of objects) inserted in/removed from their environ-
ment and about changes to pre-existing objects.

This work makes four contributions. First, we propose
to extend the client interface to directory services with a
proactive approach that allows clients to obtain up-to-date
information at little or no extra cost in terms of client and
server load.

Second, we propose the customization of notification on
a per-client basis through the attachment of client-specific
“filter” functions that are shipped to and efficiently executed
at the notifications’ sources.

Third, we present evaluation results that demonstrate the
soundness of our implementation (by comparing its perfor-
mance with that of off-the-shelf implementations of DNS
and LDAP), and confirm the performance advantages that
can be derived from proactivity in terms of network traffic
and client and server load.

Finally, we demonstrate experimentally that, contrary
to common wisdom, the customization of notification
through filter functions executed at directory servers or ob-
jects’ owners does not necessarily translate into overloaded
servers. Indeed, this customization can improve the perfor-
mance of notification sources as the cost of executing the
additional filter code is outweighed by the gains resulting
from eliminating unnecessary communications (i.e., execu-
tions of protocol stacks).

The remainder of this paper is structured as follows. Sec-
tion 2 describes the ideas underlying our proactive approach
to directory service interfaces. Section 3 provides a brief
overview of the current prototype implementation of PDS.
Section 4 discusses the performance and scalability benefits
to be gained from proactivity and presents experimental re-
sults validating our hypothesis. We review related work in
Section 5, and conclude in Section 6.

2. Proactivity in Directory Services

Proactivity is a well-established system design technique
with applications ranging from device/kernel communica-
tion to component-based software integration. The use of
proactivity in directory services has some precedents in
DNS NOTIFY [41] for zone change notification, the Ninja
Secure Directory Service (SDS) [9] for service announce-

Directory

Client Owner

Filter

Filter

FilterEntity Change Notification2

1

Entity Change Notifcation

Entit
y C

han
ge N

otif
ica

tio
n
1

Clie
nt R

eg
ist

ra
tio

n

Entit
y R

eq
ues

t/R
ep

ly

Entity Registration

Figure 1. Owners register entities with the di-
rectory. Clients poll the directory for specific
entities or types of entities. Clients can regis-
ter to receive notifications of entity changes
(from the directory (1) or the entity’s owner
(2)). Clients customize notification chan-
nels through filters placed at the notification
sources.

ment, and the “persistent search” extension to LDAP pro-
posed by Smith et al. [31].

Our proposal to extend directory services interfaces with
proactivity has three parts: (1) we associate a channel for
change notification with each object managed by the di-
rectory service, through these channels clients can become
aware of changes to their objects of interest; (2) we support
the customization of notification channels through client-
specific filters, which are then used by the server to deter-
mine whether to send a given update; and (3) we adopt a
leasing model for client registration to a notification chan-
nel that simplifies the handling of client failures. We now
discuss each of these ideas in more detail.

Changes to an object managed by the directory service
are reported to registered clients over the object’s associated
notification channel. Multiple clients can be registered with
each notification channel and, conversely, a single client can
be registered with multiple notification channels. Examples
of types of events include the creation or removal of an en-
try or changes to (the attributes of) an existing entry in the
directory.

An implicit attribute of passive, pull-based interfaces is
control: clients are in control of the frequency and type of
the messages exchanged with the directory service. Proac-
tivity allows clients to trade control for performance, as
message traffic is (only) generated when updates occur. Af-
ter registration, however, clients are at the mercy of the ser-
vice and can find themselves swamped with unforeseen (and
potentially unwanted) updated messages.

At first glance, providing a filter at the client to discard
the unwanted updates might seem enough. Although this
does allow the application to ignore such updates, the cor-
responding messages are still sent across the network, in-

2

creasing the load on the server, the network, and the client.
Providing a single interface at the server to control proac-
tive traffic is also insufficient, as different clients interested
in changes may have different criteria for discarding update
messages.

A better approach allows client-specific customization of
the update channel. To customize a channel, a client pro-
vides a specification (in the form of a function) of “relevant”
events. The server then uses these specifications, on a per-
client basis, to determine whether to send a given update.

A critical issue then is the nature of the functions speci-
fying clients’ interest. Such functions could be expressed in
a restricted filter language [6, 34] or in a general interpreted
language such as Tcl/Tk [26] or Java [20]. A third approach,
and the one adopted in PDS, is to allow specifications in a
general (procedural) language, but to utilize dynamic code
generation to create a native version of the functions at the
notification source.

To avoid the unnecessary cost of pushing updates to
clients who have failed (or terminated normally without un-
binding) we advocate the use of leasing for registrations
with notification channels. A lease, in this context, repre-
sents a period of time during which the request for change
notification is active 1. Clients can request a lease period,
but the actual length of it is determined by the directory
service. In addition, clients holding a lease can choose to
cancel it or request its renewal.

The following section describes the architecture of our
Proactive Directory Service and details its current prototype
implementation. We present an overview of the language
used for filter customization and describe the implementa-
tion of its dynamic code generation framework.

3. A Proactive Directory Service Prototype

To validate our approach we have designed and imple-
mented PDS, a prototype of a proactive directory service.
The PDS prototype is implemented in C/C++ on top of an
event communication mechanism [10] and makes use of an
efficient and extensible binary transport for communication
in heterogeneous environments [2].

The PDS architecture includes three main components:
PDS clients, servers and objects owners (Figure 1). PDS
clients want to discover available objects in the environ-
ment and become aware of any change to them that could
affect their functionality and/or performance. Objects own-
ers make their objects available by publicizing them through
the directory service. Servers act as mediators between
clients and owners.

1Leasing also simplifies the handling of directory server failures, since
such failures are perceived by clients of the service’s proactive interface as
lease cancellations.

Domain
Domain

Entity

Context

Context Context

Context

Entity

Context

Context

Entity

Context

Entity

Context

Attribute

Attribute

Attribute
Attribute

Attribute

Attribute

Attribute

Attribute

Attribute Attribute

Attribute

Attribute

Figure 2. PDS data model: domains, contexts
and entities. Each domain owns a root con-
text in which all descendants are named.

As is common in directory services, related information
in PDS is organized into well-defined collections called en-
tities, where each entity represents an instance of an actual
type of object in the environment (such as a host available
for computation) and has an associated set of properties,
or attributes, with particular values (such as CPU load or
memory usage). Entities may be bound to names in dif-
ferent contexts and each context contains a list of name-to-
entity bindings. In turn, contexts may themselves be bound
to names in other contexts, building an arbitrary directed
naming graph. Scalability of the global name space is ob-
tained by dividing it into sub-spaces and assigns these sub-
spaces to domains, each with a single root context.

Each object in PDS, be it a domain, a context, or an en-
tity, has associated with it an event channel to which clients
can subscribe. Each of the state-changing operations imple-
mented by PDS submits an event to the notification channel
associated with the appropriate object. When the owner of
an object changes the value of some of the object’s attributes
(a significant drop on CPU availability at a given host, for
instance), a notification is submitted to the associated chan-
nel.

The customization of these notification channels is done
through client-specified filter functions written in ECL, a
portable subset of C. These functions are shipped to the no-
tification sources where there are dynamically compiled and
installed. We now describe the capabilities of ECL and the
current implementation of its translator.

3.1. ECL and Notification Channel Customization

The customization of notification channels, done on a
per-client basis, is done through client-specified filter func-
tions written in ECL. In these functions it is possible to ex-
amine the notification data and compare it with historical
information to determine whether the notification should be

3

Table 1. ECL language basics. Types obey C promotion and conversion rules. Operators obey C
precedence rules, and parentheses can be used for grouping.

Control-flow statements
Statement General form
for for (initial-statement; condition; iteration-statement) statement
if-then-else if (condition) statement else statement
return return statement

Fundamental types
Type class Type
Integral types char, short, int, long, signed char, unsigned char,

signed short, unsigned short, unsigned long,
signed long

Floating types float, double
String types string
Special return type void

Basic operators
Operator class Operators
Arithmetic operators +,-,*,/,%,
Boolean operators !,&&, � ,
Relational operators � , � , � =, � =,==,!=
Assignment =

sent (Figure 3).
ECL is a high-level language for dynamic code gener-

ation that targets specifically the generation of small code
segments whose simplicity does not merit the cost and com-
plexity of a large interpreted environment. ECL currently
supports most C operators and fundamental data types, as
well as static variables, function calls and basic control flow
statements (Table 1). In terms of basic types, ECL does not
currently support pointers, though the type string is in-
troduced as a special case with limited support.

The implicit context in which filters are evaluated is a
function of the form:

int f(� notification type � input)

The return value of the function determines whether the
notification would be issued to the registered clients.

In addition, filters can be parameterized by associating
with them a set of read-only variables that clients can up-
date remotely in a push-type operation. Through this, for
example, a client can adjust the range of the filter shown in
Figure 3.

ECL’s dynamic code generation capabilities are based on
Icode, an internal interface developed at MIT as part of the
’C project[28]. Icode supports dynamic code generation for
MIPS, Alpha and Sparc processors and we have extended it
to support MIPS n32 and 64-bit ABIs and x86 processors2.
ECL consists primarily of a lexer, parser, semanticizer and
code generator.

2Integer x86 support was developed at MIT. We extended Vcode to
support the x86 floating-point instruction set (only when used with Icode).

{
if ((input.cpuUsage < 0.1) ||

(input.cpuUsage > 0.6)) {
return 1; /* submit event to channel */

}
return 0; /* do not submit event */

}

Figure 3. An ECL filter that passes on notifi-
cations on changes to CPU utilization when
the value is outside a specified range (in this
case: � �����
	����
��).

4. Evaluation

In this section, we present evaluation results that con-
firm the expected performance advantages of a proactive
approach. We first verify the fitness of our prototype imple-
mentation by comparing the performance of PDS support of
the traditional pull-based interface with that of off-the-shelf
implementations of DNS and LDAP. We use BIND DNS
because it is a highly optimized directory system; OpenL-
DAP is an LDAP implementation that provides functional-
ity and extensibility similar to PDS and forms the basis for
MDS [12]. We then analyze the performance benefits of a
proactive approach in the context of PDS.

Intuitively, proactivity provides scalability and high per-
formance by reducing the amount of work done by clients
(and correspondingly by servers) in order to become aware
of updates. The costs of providing clients with up-to-date
information (similar arguments apply to maintaining strong

4

consistency in clients’ caches [5]) can be measured in (1)
client-service communication, (2) client CPU load and (3)
server CPU load.

Proactivity reduces the load on the server by significantly
reducing the number of client requests for updates. Client
load is reduced because the server (or the object’s owner)
is responsible for notifying the client when changes occur
to the object. The number of messages in the system is re-
duced by eliminating client polling for updates, resulting in
an optimal message-per-update. These intuitive statements
are validated by experimentation described next.

We configure one host each as client, server, and object’s
owner. Each host used in our test has 4 Intel Pentium Pro
processors with 512MB of RAM, runs RedHat Linux 6.2,
and is connected with the other hosts by a 100Mbps Fast
Ethernet.

Given a randomly generated sequence of owner’s up-
dates and different desired degrees of consistency, we mea-
sure the load imposed on clients and servers as indicated by
percentage of total CPU time consumed.

4.1. Comparing DNS, LDAP and PDS Pull-Based
Interface

We first verify the fitness of our prototype implemen-
tation by comparing the performance of PDS’ pull inter-
face against that of BIND DNS 8.2.2-7 [7] and OpenL-
DAP 1.2.1 [14]. For our experiments, all client-side caches
were disabled and we ran DNS over TCP (by setting its ’vc’
option) for purposes of comparison (OpenLDAP and PDS
both use TCP for transport). Figure 4 and Figure 5 show
the client and server loads for this three cases. We now ana-
lyze the performance benefits of a proactive approach in the
context of PDS.

4.2. Performance Benefits from Proactivity

The benefits of a proactive interface for clients are clear
from Figure 6. The figure shows that by using PDS’s proac-
tive mode, a (near) perfect (�) degree of consistency can be
obtained, at a load on the client that is one-fourth that of un-
der a pull-based interface. Note that advocate the extension,
not the replacement, of traditional directory service inter-
faces with proactivity. Proactivity is beneficial when clients
require up-to-date information but its benefits are less clear
when lowers degrees of consistency are sufficient.

Figure 7 shows the benefits of proactivity to servers
when clients require fresh information. It shows that
through proactivity, a perfect degree of consistency can be
obtained at a reasonably low server load. The scalability
problems of a pull-based interface (as faced by PDS through
its traditional interface, as well as the DNS and LDAP im-
plementations) are clear.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

Degree of consistency

C
lie

nt
 s

ys
te

m
 C

P
U

 ti
m

e

PDS Pull
DNS Pull
LDAP Pull

Figure 4. DNS, OpenLDAP and PDS client load
(measured as percentage of total CPU time
consumed) needed to reach a given degree of
consistency through a traditional pull-based
interface. Notice, however, that 100% consis-
tency is inherently unachievable due to mes-
sage latency.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree of consistency

S
er

ve
r

sy
st

em
 C

P
U

 ti
m

e

PDS Pull
DNS Pull
LDAP Pull

Figure 5. DNS, OpenLDAP and PDS server
load (measured as percentage of total CPU
time consumed) needed to reach a given de-
gree of consistency through a traditional pull-
based interface.

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Degree of consistency

C
lie

nt
 s

ys
te

m
 C

P
U

 ti
m

e

PDS−Push

PDS Pull
PDS Push

Figure 6. PDS Client load (measured as per-
centage of total CPU time consumed) needed
to reach a given degree of consistency
through PDS’ traditional and proactive inter-
faces. Notice that the client load imposed by
a proactive approach (PDS-Push) is shown
as a single point since the experiment setup
does not include filtering.

As previously mentioned, these experiments are only ex-
amples intended to illustrate the potential cost and bene-
fits of our proactive approach. In fact, the load imposed on
these servers is not significantly serious. Even at the point
of perfect consistency (highest-rate of pull for pull-based
clients), this particular experiment imposes a load of only
400 requests/replies over 6 minutes (about 1.1 messages per
second).

4.3. Evaluating the Costs of Client-Based Cus-
tomization

In order to avoid the possible drawbacks of a proactive
approach, we advocate the dynamic customization of noti-
fication channels through filter functions. The performance
gains resulting from reduced network traffic come at the
cost of generating and executing filter functions . Although
these costs vary with the nature of the filter code, it is infor-
mative to examine some representative examples.

Table 2 compares the costs of code generation and ex-
ecution of ECL with those of Java interpretation, the most
likely alternative representation for filter functions. Range
refers to the filter illustrated in Figure 3. The dynamic code
generation for this filter requires 4 milliseconds on a Sun
Sparc Ultra 30. The generated filter subroutine contains 27
Sparc instructions, and it executes in about 165 nanosec-
onds. In comparison, the same filter function implemented

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

Degree of consistency

S
er

ve
r

sy
st

em
 C

P
U

 ti
m

e

PDS−Push

PDS Pull
PDS Push

Figure 7. PDS Server load (measured as
percentage of total CPU time consumed)
needed to reach a given degree of consis-
tency through PDS’ traditional and proactive
interfaces. Notice that the server load im-
posed by a proactive approach (PDS-Push) is
shown as a single point since the experiment
setup does not include filtering.

in Java requires 1.8 microseconds for execution with Just-
In-Time compilation enabled (3.7 microseconds otherwise).
A second filter, array-average, averages the entries of an in-
coming array of doubles before filtering out the notification.
This filter is somewhat more complex that the previous one
and the difference shows in the cost of dynamic code gen-
eration and, in particular, the cost of Java interpretation.

Initial experiments show that such customization, de-
pending on the level of filtering, does not necessarily imply
additional processing load, but can instead result in a net re-
duction (Figure 8). This is due to the fact that the additional
cost of executing the filter code is out-weighed by gains in
performance from the elimination of unnecessary message
communications (i.e., executions of protocol stacks).

The experiments confirm our hypothesis that an inactive
model of client-server interaction restricts the scalability of
directory services, and they demonstrate the clear benefits
of a proactive approach.

4.4. Server Scalability

As more clients register interest in entities maintained
by PDS, the server must do more work in pushing changes
when updates occur. As with any push-based solution, it is
important that PDS performance scales well with increasing
load. In this section we describe how increased load (in the

6

Table 2. Comparing ECL code generation and execution with Java interpretation.

Filter ECL Generation ECL Execution Java JIT Java
Range 4ms 165 ns 1.7 � s 3.7 � s
Array-average 5.5 ms 1.28 ms 13.33 ms 75.43 ms

C
P

U
 T

im
e

p
er

 1
00

0
m

es
sa

g
es

 (
se

c)

0.082 sec
user time

.046 sec
user time

system time
.034 sec

0.110 sec
user time

0.115 sec
user time

No
Filtering

0%
Rejection

50%
Rejection

100%
Rejection

.017 sec
system time

.048 sec
system time

.048 sec
system time

0.05

0.10

0.15

0.0

Figure 8. Server CPU utilization under differ-
ent specialization scenarios.

form of an increased number of clients registered for up-
dates) does not unreasonably degrade server performance.

Experimental setup. We constructed a set of experiments
to test server scalability with a growing set of clients in-
terested in updates. Our experiments were conducted on a
cluster of 8-processor 550Mhz Intel Xeon machines, each
having 4Gb of RAM connected via a dual gigabit Ethernet
network backplane. We allocated a maximum of 5 clients
on any one machine, so that each client was guaranteed to
have a processor available. Additionally, the clients were
started in an interleaved fashion across machines.

Each experiment consists of a set of 1000 event pushes to
the set of interested clients. This set varies in size between
1, 10, 20, 30, 40, and 50 clients. We used a single event size
of roughly 100 bytes. This size is comparable to a majority
of update events generated by PDS. We believe this to be a
reasonable decision given that we expect directory services
to steward small pieces of data and so it is efficient to de-
liver updated data along with the update notification. PDS
can be configured to deliver only notifications if necessary.
Also, larger event sizes should not affect the scalability of
the server in the face of increasing numbers of clients; they
do not contribute to overhead at the server and represent a
proportional increase in work that is unrelated to the num-
ber of clients served.

For each experimental scenario, we report several met-
rics. Total send time is measured as the “wall-clock” time
needed by the server to fully distribute the set of updates

1 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

Number of interested clients

T
im

e
(s

)

Server Scalability − No Client Customization

total send time
system CPU time
user CPU time

Figure 9. Server scalability with no client cus-
tomization.

among the set of clients. As the underlying event chan-
nel middleware we use, ECho, is based on TCP, an event
send involves a TCP write() to each client. Real-time
measurements in this section begin with the first event send
and terminate at the end of the last server-side write().
We measure a large enough sample size of events that TCP
buffering effects are negligible. Server load is expressed as
the amount of user and system time elapsed in distributing
the updates.

We now describe the results of our experiments. We
tested scenarios in which clients do not customize the event
channel as well as those where clients discard varying pro-
portions of the event stream. We also tested cases in which
the proportions of the event stream were not the same across
the entire set of clients.

No client customization. In the basic case, clients regis-
ter interest in updates and receive every one without any
customization or filtering. As the number of clients in-
creases, the server must distribute all updates to all inter-
ested clients.

Figure 9 shows that our basic measures (real-time, user-
state CPU time, and system-state CPU time) increase
roughly linearly with the number of clients. This is to be ex-
pected given the one-to-one nature of the underlying trans-

7

1 10 20 30 40 50
0

0.5

1

1.5

2

2.5

Number of interested clients

T
im

e
(s

)

Server Scalability − Clients Discard 20% Of Updates

total send time
system CPU time
user CPU time

Figure 10. Server scalability where clients dis-
card 20% of update traffic.

port.

Clients using filters. As described previously, a key ben-
efit of the proactive mode implemented by PDS is the ability
of clients to throttle the rate of updates through customiza-
tion of the event channel. Figures 10, 11, and 12 illustrate
scenarios where the set of clients discard 20%, 50%, and
80% of updates, respectively.

Figure 10 shows a slight increase in user CPU time com-
pared to the no-filter case. This is due to the execution of
the filter that decides whether or not to discard the update.
At the higher discard rates shown in Figures 11 and 12, the
user CPU time drops, reflecting the savings realized by not
executing the TCP stack for discarded updates.

These results show that the measured server load in-
creases in a linear manner. However, it is also important
to note that the absolute time required to send the entire set
of updates decreases greatly with increasing customization
of the event channel. This very clearly illustrates the power
of combining proactive notification with client control of
update rate.

Although it is reasonable to assume that most clients
of a directory service will use similar customizations (dis-
card updates when the update rate exceeds a certain value,
or based on a data item in the update itself), it would be
questionable to assume that all clients would use the same
discard criteria. Accordingly, Figures 13 and 14 depict in-
stances where two different proportions of the same update
stream are being discarded. In both cases half of the clients
discard 80% of update traffic, but the other half discards
20% and 50%, respectively.

Although not as favorable as the single-customization

1 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Server Scalability − Clients Discard 50% Of Updates

Number of interested clients

T
im

e
(s

)

total send time
system CPU time
user CPU time

Figure 11. Server scalability where clients dis-
card 50% of update traffic.

1 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5
Server Scalability − Clients Discard 80% Of Updates

Number of interested clients

T
im

e
(s

)

total send time
system CPU time
user CPU time

Figure 12. Server scalability where clients dis-
card 80% of update traffic.

8

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Server Scalability − Multiple Client Customizations (20%/80%)

Number of interested clients

T
im

e
(s

)

total send time
system CPU time
user CPU time

Figure 13. Server scalability where half of the
clients discard 20% of update traffic and half
discard 80%.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2
Server Scalability − Multiple Client Customizations (50%/80%)

Number of interested clients

T
im

e
(s

)

total send time
system CPU time
user CPU time

Figure 14. Server scalability where half of the
clients discard 50% of update traffic and half
discard 80%.

cases, these results also indicate that a push-update system
can scale adequately as the number of client connections in-
creases. The absolute reduction in CPU times also holds in
the 50%/80% case, further demonstrating the scalability of
the server.

Middleware enhancements. In the final analysis, the
scalability of PDS or any other push-update mechanism is
bounded by the capabilities of the underlying event chan-
nel middleware. Our group is actively working to develop
more scalable middleware for multicast/broadcast situa-
tions. Specifically, we are currently modifying our transport
layer to use IP-Multicast. Reliability and further adaptabil-
ity will be guaranteed by an adaptive Reliable UDP package
we have developed [19]. When these changes are in place,
clients with interest in the same data items will occupy the
same multicast group, allowing true event broadcast instead
of a sequence of unicasts. We are also addressing wide-area
event distribution through the use of an overlay network to
efficiently route update traffic.

5. Related work

There are many variants on the common theme of direc-
tory services. Classical directory services [23, 33, 29] were
designed under the assumption of fairly stable mappings be-
tween objects’ attributes and their values.

Active Names [38] and INS [1] concentrate on the prob-
lem of efficient and flexible name-to-object resolution, as
opposed to PDS’ emphasis on providing low-impact up-to-
date information to clients. Each of these objectives is desir-
able in a wide-area environment, and the concept of proac-
tivity is certainly compatible with either Active Names or
INS.

Directory services supporting entries with attributes have
made feasible service and resource discovery by processing
queries containing a set of desired attributes [42, 27, 40, 9].
PDS also supports retrieval of entities based on attribute-
value pairs. While Jini relies on Java RMI as a trans-
port mechanism; PDS uses a fast binary transport encoding
mechanism that provides superior performance [2]. PDS
does not currently address issues of authentication and se-
cure communication as does SDS.

Czajkowski et al. [8] present the architecture of MDS-
2, the new generation of MDS [12]. Their framework is
intended to satisfy widely different information service re-
quirements. Their infrastructure currently supports only a
traditional pull-based client interface, although the incorpo-
ration of a proactive extension is part of their planned future
work.

The use of proactivity in directory services has some
precedents [41, 9]. All these proposals, however, maintain a

9

passive client interface and, thus, their associated scalability
problems.

Proactivity is perhaps most closely related to persis-
tent searches as proposed by Smith et al. [31]. Persistent
searches are an extension to LDAP that would allow clients
to receive notification of changes in a server by allowing
standard search operations to remain active until abandoned
by the client (or until the client unbinds). In addition, our
approach considers the dynamic customization of notifica-
tion channels through client-specified functions to recover
some of the client’s control inherent in traditional pull-
based interfaces.

The Global Grid Forum’s Performance Working Group
is developing a Grid Monitoring Architecture (GMA) [37]
for computational grids. GMA is specifically aimed at
performance-monitoring and could thus benefits from the
characteristics of this type of information (such as short life-
time, frequent update rate and stochastic nature). Although
PDS is a general directory service, it shares a number of
architectural ideas with GMA including their three main
architectural components, the components’ roles and their
types of interaction. We believe PDS could potentially be
used to implement an “extended” GMA and we have started
to explore this research path with AIMS, an Adaptive Intro-
spective Management System [3].

Our work on PDS has some similarities with research on
wide-area cache consistency [18, 5]. We affirm the conclu-
sions presented in both papers about the impact of client
polling on server load and network usage. When relying
on invalidation, clients are still responsible for retrieving
the updated web page from the server. PDS has the abil-
ity to supply the updated object/attribute data in the update
message, thereby saving a message exchange; in addition,
it provides clients with the possibility of customizing such
updates to their own needs.

We propose the extension of directory services’ inter-
faces with a customizable push-based mode. There is a
significant body of related work in push-based delivery sys-
tems and publish-subscribe infrastructures as well as some
standardization efforts. Yeast [21] is an event-action sys-
tem with a rich event pattern language where actions are
specified as UNIX shell scripts. AT&T Labs’ READY [17]
extends Yeast with a set of high-level constructs and a
richer specification language that allows compound match-
ing events and QoS directives. Elvin [30] is a central-
ized event dispatcher with an expressive event-filtering lan-
guage. Siena [6] and Gryphon [34] are both content-based
message-brokering systems while our group’s ECho [10]
and the Java Distributed Event Specification [35] adopt a
channel-based addressing scheme. Yu et. al [44] proposed
an event notification service with a novel peer-to-peer archi-
tecture of proxy servers. The CORBA Event Service [25]
and the Notification Service [24] specification, as well as

the Java Message Service [36] are well-known efforts to
specify event notification services. PDS relies on ECho to
implement the client-customizable channels that associates
with each of its objects.

6. Conclusion and Future Work

We have presented a case for the support of proactive in-
terfaces by directory services based on their potential bene-
fit to service scalability. To address the possible drawbacks
of a push-based approach, we have proposed the use of
client-specific server customization. In order to validate our
ideas, we have designed and built PDS, a proactive direc-
tory service that implements our approach. Our experimen-
tal results show that (i) directory services with exclusively
passive interfaces can encounter scalability problems when
used in new types of environments [11, 39, 16, 13] with
large numbers of objects and highly dynamic mappings [8],
and that (ii) a customizable form of proactivity can avoid
these problems without sacrificing control.

Some very important areas of research remain, including
the incorporation of security mechanisms and extensions to
the language used for customization. In addition, we are
working on the use of proactivity to enhance the robustness
of widely distributed services through flexible replication
strategies, dynamically adaptive server hierarchy manage-
ment, adaptive introspection and automatic failure recovery.

Acknowledgments

We are grateful to Greg Eisenhauer for his assistance
with profiling the scalability of the ECho middleware pack-
age.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lil-
ley. The design and implementation of an intentional naming
system. In Proc. of the 17th ACM Symposium on Operating
System Principles, pages 186–201, Kiawah Island, SC, De-
cember 1999. ACM.

[2] F. E. Bustamante, G. Eisenhauer, K. Schwan, and
P. Widener. Efficient wire formats for high performance
computing. In Proc. of Supercomputing 2000 (SC 2000),
Dallas, TX, November 2000.

[3] F. E. Bustamante, C. Poellabauer, and K. Schwan. Aims:
Robustness through sensible introspection. In Proc. of the
Tenth ACM SIGOPS European Workshop, Saint-Emilion,
France, September 2002.

[4] F. E. Bustamante, P. Widener, and K. Schwan. The case
for proactive directory services. In Proc. of Supercomput-
ing 2001 (SC 2001)- Poster Session, Denver, CO, November
2001.

10

[5] P. Cao and C. Liu. Maintaining strong cache consistency
in the World-Wide Web. IEEE Transactions on Computers,
47(4):445–457, April 1998. Published in the 17th IEEE In-
ternational Conference of Distributed Computing.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems, 19(3):332–383, August
2001.

[7] I. S. Consortium. Bind domain name service.
http://www.isc.org/products/BIND/bind8.html.

[8] K. Czajkowski, S. Fitzegerald, I. Foster, and C. Kesselman.
Grid information services for distributed resource sharing.
In Proc. of the 10th High Performance Distributed Comput-
ing (HPDC-10), San Francisco, CA, August 2001.

[9] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz.
An architecture for a secure service discovery service. In
Proc. of ACM/IEEE MOBICOM, pages 24–35, August 1999.

[10] G. Eisenhauer, F. E. Bustamante, and K. Schwan. Event ser-
vices for high performance computing. In Proc. of the 9th
High Performance Distributed Computing (HPDC-9), Pitts-
burgh, PA, August 2000. IEEE.

[11] M. Esler, J. Hightower, T. Anderson, and G. Borriello. Next
century challenges: Data-centric networking for invisible
computing. In Proc. of the 5th ACM/IEEE International
Conference on Mobile Computing and Networking, pages
24–35, Seattle, WA, August 1999.

[12] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,
W. Smith, and S. Tuecke. A directory service for configur-
ing high-performance distributed computation. In Proc. of
the 6th High Performance Distributed Computing (HPDC-
6), pages 365–375, Portland, OR, August 1997. IEEE.

[13] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. International Journal of Supercomput-
ing Applications, 11(2):115–128, 1997.

[14] O. Foundation. The OpenLDAP Project.
http://www.openldap.org//

[15] R. Grimm, T. Anderson, B. Bershad, and D. Wetherall. A
system architecture for pervasive computing. In Proc. of
the 9th ACM SIGOPS European Workshop, pages 177–182,
Kolding, Denmark, September 2000.

[16] A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey. Le-
gion: An operating system for wide-area computing. IEEE
Computer, 32(5):29–37, May 1999.

[17] R. E. Gruber, B. Krishnamurthy, and E. Panagos. High-level
cosntructs in the READY event notification service. In Proc.
8th ACM SIGOPS European Workshop on Support for Com-
posing Distributed Applications, Sintra, Portugal, Septem-
ber 1998.

[18] J. Gwertzman and M. Seltzer. World-Wide Web cache con-
sistency. In Proc. of the 1996 USENIX Technical Confer-
ence, January 1996.

[19] Q. He and K. Schwan. IQ-RUDP: Coordinating applica-
tion adaptation with network transport. In Proc. of the
11th High Performance Distributed Computing (HPDC-11),
pages 369–378, Edinburgh, Scotland, July 2002.

[20] D. Kramer. The Java platform: A white paper. Sun Mi-
crosystems Inc, May 1996.

[21] B. Krishnamurthy and D. S. Rosenblaum. Yeast: a general
purpose event-action system. IEEE Transactions on Soft-
ware Engineering, 21(10):845–857, October 1995.

[22] Massachusetts Institute of Technology. MIT project Oxy-
gen. http://www.lcs.mit.edu//

[23] P. Mockapetris and K. J. Dunlap. Development of the do-
main name system. In Symposium proceedings on Commu-
nications architectures and protocols (SIGCOM’98), pages
123–133, Stanford, CA, August 1988. ACM.

[24] OMG. Notification service specification 1.0.
ftp://www.omg.org/pub/doc/formal//0-06-20.pdf, June
2000.

[25] OMG. Event service specification 1.1. ftp://www.omg.org/
pub/docs/formal//1-03-01.pdf, March 2001.

[26] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley,
1994.

[27] C. Perkins. Service location protocol white pa-
per. http://playground.sun.com/srvloc/slp white paper.html,
May 1997.

[28] M. Poletto, D. Engler, and M. F. Kaashoek. tcc: A template-
based compiler for ‘c. In Proc. of the First Workshop on
Compiler Support for Systems Software (WCSSS), February
1996.

[29] S. Radicati. X.500 directory services: Technology and de-
ployment. Technical report, International Thomson Com-
puter Press, London, UK, 1994.

[30] B. Segall and D. Arnold. Elvin has left the building: a
publish/subscribe notification service with quenching. In
Proc. of AUUG97, pages 243–255, Brisbane, Australia,
September 1997.

[31] M. Smith, G. Good, R. Weltman, and T. Howes. Persis-
tent search: a simple LDAP change notification mechanism.
Working document, IETF, November 2000. draft-smith-
psearch-ldap-00.txt.

[32] W. Smith, A. Waheed, D. Meyers, and J. Yan. An evalua-
tion of alternative designs for a grid information service. In
Proc. of the 9th High Performance Distributed Computing
(HPDC-9), Pittsburgh, PA, August 2000. IEEE.

[33] M. V. Steen, F. J. Hauck, and A. S. Tanenbaum. Locating
objects in wide-area systems. IEEE Communication Maga-
zine, pages 104–109, January 1998.

[34] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller,
B. Mukherjee, D. Sturman, and M. Ward. Gryphon: An in-
formation flow based approach to message brokering. In In-
ternational Symposium on Software Reliability Engineering
’98 Fast Abstract, 1998.

[35] Sun Microsystems. Java distributed event specification.
Moutain View, CA, 1998.

[36] Sun Microsystems. Java message service. Moutain View,
CA, 1999.

[37] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wol-
ski, and M. Swany. A grid monitoring architecture. Grid
Working Draft GWD-Perf-16-2, Global Grid Forum – Per-
formance Working Group, January 2002.

[38] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal. Ac-
tive names: flexible location and transport of wide-area re-
sources. In Proc. of USENIX Symp. on Internet Technology
& Systems, October 1999.

[39] M. van Steen, P. Homburg, , and A. Tanenbaum. Globe: A
wide-area distributed system. IEEE Concurrency, 7(1):70–
78, January-March 1999.

11

[40] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service
location protocol. RFC 2165, Network Working Group, June
1997.

[41] P. Vixie. A mechanism for prompt notification of zone
changes (dns notify). RFC 1996, Network Working Group,
August 1996.

[42] J. Waldo. The Jini architecture for network-centric comput-
ing. Communication of the ACM, 42(7):76–82, July 1999.

[43] W. Yeong. Lightweight directory access protocol. RFC
1777, Network Working Group, March 1995.

[44] H. Yu, D. Estrin, and R. Govindan. A hierarchical proxy ar-
chitecture for internet-scale event services. In Proc. of WET-
ICE’99, Stanford, CA, June 1999.

12

