

Computer Science Department

Technical Report
NWU-CS-03-22

December 13th, 2003

Resilient Peer-to-Peer Multicast from the Ground Up

Stefan Birrer and Fabián E. Bustamante

Abstract

One of the most important challenges of peer-to-peer multicast protocols is the ability to
efficiently deal with the high degree of churn inherent to their environment. As multicast
functionality is pushed to autonomous, unpredictable peers, significant performance
losses can result from group membership changes and the higher failure rates of end-
hosts when compared to routers. Achieving high delivery ratios without sacrificing end-
to-end latencies or incurring additional costs has proven to be a challenging task.

This paper introduces Nemo, a novel peer-to-peer multicast protocol that aims at
achieving this elusive goal. We present an extensive comparative evaluation of our
protocol through simulation and wide-area experimentation. We compare the
performance of Nemo with that of three alternative protocols: Narada, Nice and Nice-
PRM. Our results show how Nemo can achieve delivery ratios similar to those of
comparable protocols (up to 99.98%) under different failure rates, but at a fraction of
their cost in terms of duplicate packets (reductions > 85%) and control-related traffic.

Keywords: Peer-to-peer, overlay multicast, resilience, churn.

Resilient Peer-to-Peer Multicast from the Ground Up

Stefan Birrer and Fabián E. Bustamante
Department of Computer Science

Northwestern University, Evanston IL 60201, USA,
{sbirrer,fabianb}@cs.northwestern.edu

December 13th, 2003

Abstract

One of the most important challenges of peer-to-peer multicast protocols is the ability to
efficiently deal with the high degree of churn inherent to their environment. As multicast func-
tionality is pushed to autonomous, unpredictable peers, significant performance losses can result
from group membership changes and the higher failure rates of end-hosts when compared to
routers. Achieving high delivery ratios without sacrificing end-to-end latencies or incur-
ring additional costs has proven to be a challenging task.

This paper introduces Nemo, a novel peer-to-peer multicast protocol that aims at achiev-
ing this elusive goal. We present an extensive comparative evaluation of our protocol through
simulation and wide-area experimentation. We compare the performance of Nemo with that
of three alternative protocols: Narada, Nice and Nice-PRM. Our results show that Nemo can
achieve delivery ratios similar to those of comparable protocols (up to 99.98%) under different
failure rates, but at a fraction of their cost in terms of duplicate packets (reductions> 85%) and
control-related traffic.

1 Introduction

Multicast is an efficient mechanism to support group communication. It decouples the size of the
receiver set from the amount of state kept at any single node and potentially avoids redundant
communication in the network, promising to make possible large scale multi-party applications
such as audio and video conference, research collaboration and content distribution. More of a
decade after first being proposed, however, IP Multicast [14] is not yet widely available due in part
to a number of both technical and non-technical issues [15].

In recent years a number of researchers have proposed an alternate, peer-to-peer architecture for
supporting group communication applications over the Internet. In this middleware, or application-
layer, approach participating peers organize themselves into an overlay topology for data delivery.
The topology is an overlay in the sense that each edge corresponds to a unicast path between two

1

end systems or peers in the underlying Internet. All multicast related functionality is implemented
at the peers instead of at routers, and the goal of the multicast protocol is to construct and maintain
an efficient overlay for data transmission.

Despite the undeniable advantages of this approach, a number of issues need to be addressed if it
is to become a practical alternative to IP Multicast [13, 5]. First, application-layer multicast can re-
sult in higher stress on the network, as it is impossible to completely prevent multiple overlay edges
from traversing the same physical link. Second, communication between peers may involve visiting
other peers, possibly resulting in higher latencies. Lastly, as multicast functionality is pushed to
autonomous, unpredictable peers, significant performance loss can result from the higher degree of
transiency (a.k.a.churn) of end hosts when compared to routers.

Efficiently handling the inherent high degree of churn on peer populations may well be the
primary challenge for P2P architectures [5]. Measurement studies of widely used P2P systems
have reportedmedian session times1 ranging from an hour to a minute [8, 18, 29]. Achieving high
delivery ratios under these conditions without sacrificing end-to-end latencies or incurring additional
costs has proven to be a difficult task.

This paper introduces Nemo, a novel peer-to-peer multicast protocol that aims at achieving this
elusive goal. Based on two techniques: (1)co-leadersand, (2)triggered negative acknowledg-
ments (NACKs), Nemo’s design emphasizes conceptual simplicity and minimum dependencies [1],
achieving, in a cost-effective manner,performance characteristics resilient to the natural instability
of its target environment.

Simulation-based and wide-area experimentations show how Nemo can achieve high delivery
ratios (up to 99.98%) and low end-to-end latency similar to those of comparable protocols, while
significantly reducing the cost in terms of duplicate packets (reductions> 85%) and control related
traffic, making the proposed algorithm a more scalable solution to the problem.

We introduce Nemo’s approach to resilient multicast and present its operational details in Sec-
tion 2. Section 3 describes our experimental setup and reports the results from simulation and
wide-area experiments. We discuss related work and conclude in Sections 4 and 5.

2 Nemo’s Approach

Nemo follows theimplicit approach[3, 10, 28, 36] to building a resilient overlay for multicasting:
it organizes the participating peers into a control topology and implicitly defines the data delivery
network based on a set of forwarding rules which we will describe shortly.

The set of communication peers are organized into clusters based on network proximity2, where
every peer is a member of a cluster at the lowest layer. Clusters vary in size betweend and3d− 1,
whered is a constant known as thedegree. Each of these clusters selects aleaderthat becomes a
member of the immediately superior layer. In part to avoid the dependency on a single node, every

1Session timeis defined as the time between when a peer joins and leaves the network.
2Other factors such as bandwidth [32, 13] and expected peer lifetime [8] could be easily incorporated.

2

cluster leader recruits a number of co-leaders with whom it form the crew. The process is repeated,
with all peers in a layer being grouped into clusters from which leaders are selected to participate in
the next higher layer. Hence peers can lead more than one cluster in successive layers of this logical
hierarchy.3

Our work focuses on improving the resilience of peer-to-peer overlay multicast systems. The
following paragraphs discuss the details of our approach. We begin by explaining the dynamics
of the basic tree-based protocol such as the joining and departure of peers. We introduce then the
concepts of crews and co-leaders and elaborate on the algorithm for data forwarding and retrans-
mission.

2.1 Member Join and Departure

A new peer joins the multicast group by querying a rendezvous point for the IDs of the members on
the top layer. Starting there and in an iterative manner, the incoming peer continues(i) requesting
the list of members at the current layer from the cluster’s leader,(ii) selecting among them who
to contact next based on the result from a given cost function and(iii) decreasing the layer count.
When the new peer finds the bottom layer leader with minimal cost4, it joins the associated cluster.

To deal with dynamic changes in the underlying network, every peer periodically checks the
members of the next higher layer and switches clusters if another peer is closer than the current one
(thresholds are used to prevent instabilities).

Members can leave Nemo in announced (graceful) or unannounced manner. Common mem-
bers, without responsibilities towards other peers, can simply leave the group after informing their
cluster’s leader. Leader, on the other hand, must first elect replacement leaders for all clusters they
own; they can then leave their top layer after informing the clusters’ leaders.

To detect unannounced leaves, Nemo relies on heartbeats exchanged among the cluster’s peers
at regular intervals. Unreported members are given a fixed time interval,grace period, before being
considered dead. Once a member is determined dead, a repair algorithm is initiated. If the failed
peer happens to be a leader, the tree itself must be fixed: the members of the victim’s cluster must
elect the replacement leader from among themselves.

2.2 Planning for Node Failure

Tree-based overlay multicast protocols have proven to be highly scalable and efficient in terms of
physical link stress, state and control overhead, and end-to-end latency [19, 3, 12]. As other tree-
based structures, however, these proposed protocols have an inherent problem of resilience from
their dependence on the reliability of non-leaf nodes [5].

3This is common to both Nemo and Nice [3] as well as Zigzag [31]; the degree bounds have been chosen to help
reduce oscillation in clusters.

4In our current implementation, we use proximity as the cost function for joining.

3

Nemo addresses the resilience problem of tree-based overlay multicast protocols through the
introduction ofco-leaders. Every cluster leader recruits a number of co-leaders with whom it forms
thecrew. Crew lists are periodically distributed to the cluster’s members. Co-leaders improve the
resilience of the multicast group by avoiding dependencies on single nodes and providing alternative
paths for data forwarding. In addition, crew members share the load from message forwarding, thus
improving scalability. Figure 1 illustrates the logical organization of Nemo.

Leader

Co−leader

Ordinary member

Figure 1: Nemo’s logical organization. The shape illustrates only the role of a peer within a cluster:
a leader of a cluster at a given layer can act as co-leader or ordinary member at the next higher layer.

2.3 Data Forwarding

As with other protocols following a similar approach [3, 10, 28, 36, 31], Nemo’s data delivery
topology is implicitly defined by the set of packet-forwarding rules adopted. A peer sends a message
to one of the leaders for its layer. Leaders (the leader and its co-leaders) forward any received
message to all other peers in their clusters and up to the next higher layer. A node in charge of
forwarding a packet to a given cluster must select the destination peer among all crew members in
the cluster’s leader group. The algorithm is summarized in Figure 2.

Figure 3 illustrates the data forwarding algorithm using the logical topology from Figure 1.
Although we employ leaders for this example, the explanation is valid when routing instead through
co-leaders. Each row corresponds to one time step. At timet0 a publisher forwards the packet to its
cluster leader, which in turn, sends it to all cluster members and the leader of the next higher layer
(t1). At time t2, this leader will forward the packet to all its cluster members, i.e. the members of
its lowest layer and the members of the second lowest layer. In the last step, the leader of the cluster
on the left has to forward the packet to its members.

To illustrate Nemo’s resilience to the failure of peers, Figure 4 shows an example of the for-
warding algorithm in action. The forwarding responsibility is evenly shared among the leaders by
alternating the message recipient among them. In case of a failed crew member, the remaining
leaders can still forward their share of messages through the tree.

4

FORWARD-DATA(msg)
1 R← ∅
2 if leader /∈ msg.sender crew
3 then R← R ∪ leader
4 for each child in children
5 do if child /∈ msg.sender crew
6 then R← R ∪ child
7 SEND(msg, R, sender crew ← crewOf(self))
8 if isCrewMember(self) andleader /∈ msg.sender crew
9 then R← ∅

10 R← R ∪ super leader
11 for eachneighbor in neighbors
12 do R← R ∪ neighbor
13 SEND(msg, R, sender crew ← crewOf(leader))

Figure 2: Data Forwarding Algorithm:SEND transmits a packet to a list of nodes, selecting the real
destination among the crew members associated with the given destination.

2.4 Data Retransmission

Similar to other protocols aiming at high resilience [26, 4], Nemo relies on sequence numbers and
triggered NACKs to detect lost packets.

Every peer piggybacks a bit-mask with each data packet indicating the previously received pack-
ets. Each peer also maintains a cache of received packets and a list of missing ones. Once a gap
(relative to a peer’s upstream neighbors) is detected in the packet flow, the absent packets are con-
sidered missing after some fixed period of time. This time is selected to reduce the effect of jitter
and processing delays, and in our current is set to2 · RTT to the furthest known crew member.
For each missing packet, a NACK is sent to a peer caching it, and a different timeout is set for
retransmission.

The peer requesting the retransmission may not be the only one missing the packet. Ideally, the
requesting peer should forward the recovered packet to all other known peers (and only to those)
who need it. To achieve this we have designed an efficient algorithm that, without incurring addi-
tional control traffic, helps us improve latency in delivery for retransmitted packets while reducing
the number of duplicates. The algorithm (sketched in Figure 5) takes advantage of the fact that, over
a reasonably small window of time, a peer sees the packets from one source flowing in one logical
direction.

After a peer has detected a lost packet, it initiates the recovery protocol and decides the direc-
tion in which to forward the recovered packet, if at all. No forwarding would be required if all other
peers have successfully received the packet. Otherwise, the forwarding direction will be decided
based on the flow direction of the follow-up packets:upward/downwardif the source is logically
below/above the recovering peer. The algorithm helps reduce the number of duplicate packets gen-
erated indirectly by packet losses.

5

t0

t1

t2

t3

T
im

e

Figure 3: Basic data forwarding in Nemo. Each row corresponds to one time step.

Initially, the peer sets the forwarding direction toupwardanddownward(line 1). It then checks
all recently received packets inside afor-loop (lines 2-7). If the packets belong to the same stream,
the peer uses the packet’s sender crew to reduce the forwarding direction for the recovered packet.
If a recently forwarded packet had a sender from the peer’s successors in the tree, the recovered
packets needs only be transmitted to the peers up in the tree. Alternatively, when the packet’s
sender was an ancestor in the tree, the packet needs only be relay downwards.

3 Evaluation

We analyze the performance of Nemo using detailed simulation and wide-area experimentation.
We compare Nemo’s performance to that of three other protocols – Narada [13], Nice [3] and
Nice-PRM [4] – both in terms of application performance and protocol overhead. Application
performance is captured by delivery ratio and end-to-end latency, while overhead is evaluated in
terms of number of duplicate packets.

• Delivery Ratio:Ratio of subscribers which have received a packet within a fixed time window.
Disabled receivers are not accounted for.

• End-to-End Latency:End-to-end delay (including retransmission time) from the source to the
receivers, as seen by the application. This includes path latencies along the overlay hops, as
well as queueing delay and processing overhead at peers along the path.

• Duplicate Packets:Number of duplicate packets for all receivers counted per sequence num-
ber, reflecting an unnecessary burden on the network. Packets arrived outside of the delivery

6

(a) Publisher forwards to the crew
members.

(b) Crew members forward to next
higher layer.

(c) Co-leader forwards to all other
clusters, including its own.

Figure 4: Data forwarding in Nemo with a failed node: All nodes are able to receive the forwarded
data despite a node failure. Note how a sender alternates the packet destination among the crew
members.

window are accounted for as duplicates, since the receiver already assumed them as lost.

It is worth noticing that the implementation of all evaluated protocols is shared between the
wide-area and the simulation experiments. We achieve this by abstracting the protocols’ logic from
the environment-dependent functionality through well-defined interfaces. Thus, for any given pro-
tocol, the difference in the code-base of the wide-area and the simulator implementations is limited
to how the communication between two agents is realized.

7

RECOVER-DATA(msg)
1 d← DOWNWARD ∪ UPWARD
2 for eachpacket in recent packets
3 do if isSameStream(packet, msg)
4 then if isChild(packet.sender crew)
5 then d← d ∩ ¬ UPWARD
6 if isLeader(packet.sender crew)
7 then d← d ∩ ¬ DOWNWARD
8 FORWARD(msg, direction← d)

Figure 5: Data Recovery Algorithm: The functionFORWARD forwards a packet as specified by a
logical direction (UPWARD and/or DOWNWARD).

3.1 Details on Protocol Implementations

For each of the three alternative protocols, the values for the available parameters were obtained
from the corresponding literature [13, 3, 4].

For Narada [13], we employ the latency-only scheme for constructing the overlay. For Nice [3]
and Nice-PRM [4], the cluster degree,k, is set to 3. We used PRM-(3,0.01), PRM-(3,0.02) and
PRM-(3,0.03) with three random peers chosen by each node, and with one, two, and three percent
forwarding probability. We employ a grace period of 15 seconds.

For Nemo, the cluster degreek and the crew size are set to 3.5 The grace period is set to
15 seconds.

For the wide-area implementation, we use UDP with retransmissions: ten attempts for heart-
beats and five for all other control traffic. Data communication does not rely on retransmissions.

3.2 Experimental Setup

We performed our evaluation through detailed simulation using a locally written, packet-level,
event-based simulator and wide-area experimentation on PlanetLab, a world-wide deployed set of
nodes for experimentation with distributed systems.

We run our simulations using Inet topologies [20] with 3,072 nodes and a multicast group of
512 members.6 Members are randomly attached to routers, and a random delay of between 1 and
4 ms is assigned to every link.

Each simulation experiment lasts for 40 minutes (simulation time). All peers join the multicast
group by contacting the rendezvous point at uniformly distributed, random times within the first
200 sec. of the simulation. A warm-up time of 300 sec. is omitted from the figures. Starting
at 600 sec. and lasting for about 1200 sec., each simulation has a phase with rapid membership

5We are exploring the tradeoffs for different cluster sizes.
6Comparable results were obtained using alternative topologies including Transit-Stub and AS Waxman, and different

group sizes [6].

8

changes. During this time each protocol is exercised under two different failure rates derived from
Xu et al. [33] study on networked system failure and related research on resilient multicast [4,
33]. Under ahigh-failure rate, nodes fail independently at a time sampled from an exponential
distribution with mean,Mean Time To Failure, equal to 5 min., to rejoin shortly after (time sampled
from an exponential distribution with mean,Mean Time To Repair, equal to 2 min.). The same set
of simulations is also run with alow-failure rate given defined by MTTF of 60 min. and a MTTR of
10 min. The means for each failure rate are chosen asymmetrically to allow, on average, 5/7 of all
members to be up during this phase.

For the wide-area experiments we restrict our comparison to Nice, Nice-PRM and Nemo with
between 60 and 200 members distributed across∼90 sites. The number of members per site varies
from 1 to∼12, with most sites having two members. We inject failures at thehigh-failuredefined
used for simulation (MTTF = 5 min andMTTR = 2 min). Each protocol runs for 30 min. with
a 10-min. period with failures. The order of the three protocols is randomly chosen.

To estimate the end-to-end delay, we make use of a global time server. Every peer estimates the
difference of its local time to the time at the server. The algorithm is inspired by [23] and leads to
sufficient accuracy for our application.

All experiments were run with a payload of 100B . We opted for this relatively small packet size
to avoid saturation effects in PlanetLab. For simulations, we assume infinite bandwidth per link and
only model link delay, thus the packet size is secondary. We employ a buffer size of 32 packets and
at a rate of 10 packets per second. This corresponds to the usage of a 3.2-second buffer, which is a
realistic scenario for applications such as multimedia streaming.

3.3 Experimental Results

The remainder of this section presents and discusses results from simulation and wide-area evalua-
tions.

3.3.1 Simulation Results

For all simulation results, each data point is the mean of 25 independent runs.
The delivery ratio during the group-membership-change phase is shown in Figure 6. The first

graph shows the delivery ratio of Narada, followed by Nice, Nice-PRM(3,0.01) and Nemo. As the
figure illustrates, Nemo has a higher delivery ratio than the alternative protocols. The alternate data
paths in Nemo explain these improvements, as they enable the early detection and retransmission of
lost packets within the allowed timeout interval.

The summarized results for both failure rates (high and low) are presented in Table 1 and 2,
respectively. Nice-PRM(3,0.02), Nice-PRM(3,0.03) and Nemo achieve comparably high delivery
ratio, significantly better than Nice and Narada.

The cost of a resilient multicast protocol can be measured in terms of duplicate packets per
sequence number. The second set of columns in Tables 1 and 2 show this overhead for the com-

9

0.6

0.8

1.0

D
el

iv
er

y
R

at
io

 [%
]

Narada Nice

5 k 10 k 15 k 20 k

Packet Sequence Number

0.6

0.8

1.0

Nice PRM(3,0.01)

5 k 10 k 15 k 20 k

Nemo

Figure 6: Delivery ratio (512 end hosts, high failure rate).

pared protocols. In both cases, Nemo’s approach results in comparably high delivery ratios with
significantly lower cost in terms of duplicates.

Under both failure rates, Nice-PRM incurs a higher number of duplicate packets than Nemo and
Nice as a result of PRM’s proactive randomized forwarding. As can be seen from the alternative
PRM configurations, the number of duplicate packets correlates well with its delivery ratio.

Nemo’s higher resilience with low overhead comes at no cost in terms of latency, as can be
observed in Figure 7. The graph shows the cumulative distribution function (CDF) of latency for all
received packets with a buffer of 32 packets, which corresponds to 3.2-second delay.

Remember that Nemo introduces alternative paths to improve resilience. These alternative
paths, with delays higher than or equal to the optimal and only choice in Nice, might introduce
some latency penalties for packet delivery. However, the advantage of delivering more packets out-
weighs this disadvantage, and Nemo suffers no noticeable additional delays for packets delivered
without retransmission as seen on the left side of the plot in Figure 7.

10

Protocol Delivery ratio Duplicate packets
Mean Std Mean Max Std

Nemo 0.998 0.89E-3 3.16 3.77 0.29
Nice-PRM(3,0.01) 0.993 1.25E-3 12.47 14.43 1.04
Nice-PRM(3,0.02) 0.994 1.23E-3 18.20 19.75 0.77
Nice-PRM(3,0.03) 0.994 1.01E-3 24.22 28.14 1.82
Nice 0.992 1.95E-3 7.10 8.32 0.71
Narada 0.852 60.3E-3 0.00 0.00 0.00

Table 1: High-Failure Rate (512 end hosts).

Protocol Delivery ratio Duplicate packets
Mean Std Mean Max Std

Nemo 1.000 0.12E-3 0.34 0.59 0.09
Nice-PRM(3,0.01) 0.999 0.56E-3 6.42 6.98 0.38
Nice-PRM(3,0.02) 0.999 0.36E-3 12.00 13.43 0.66
Nice-PRM(3,0.03) 0.999 0.27E-3 16.74 18.42 0.65
Nice 0.999 0.52E-3 1.29 1.92 0.40
Narada 0.950 38.3E-3 0.00 0.00 0.00

Table 2: Low Failure Rate (512 end hosts).

3.3.2 Wide-Area Results

The results presented here are based on twenty-five runs, each a set of one experiment per protocol.
We took several measurements at different times of the day and present representative graphs for
Nemo, Nice and Nice-PRM(3,0.02). We chose 2% forwarding probability for Nice-PRM, since this
offers the best tradeoff between high delivery ratio and low number of duplicate packets.

Figure 8 shows the delivery ratio of one run each; the packet losses observed during the warm-
up interval are due to the non-deterministic influence of the environment. The graphs confirm the
simulation results.

Protocol Delivery ratio Duplicate packets
Mean Std Mean Max Std

Nemo 0.979 0.010 1.27 2.53 0.56
Nice-PRM(3,0.02) 0.953 0.024 2.02 3.00 0.57
Nice 0.939 0.032 1.06 1.83 0.47

Table 3: Wide-Area Results with High Failure Rate (PlanetLab,∼72 end hosts). The statistics
include the packets with sequence numbers from 6,000 to 12,000.

11

0.01 0.1 1 10
Latency [s]

0.2

0.4

0.6

0.8

1.0
D

el
iv

er
y

R
at

io
 [%

]

Nemo
Nice
Nice PRM(3,0.01)
Narada

Nice, Nice PRM and Nemo overlap

Figure 7: Latency CDF (512 end hosts, high failure rate).

In Table 3 we summarize the runs of the wide area experiment on PlanetLab. Nemo has a
substantially higher delivery ratio than Nice-PRM, while incurring less duplicate packets.

We show the latency distribution achieved in one wide area experiment in Figure 9. The data
sets correspond to the plots shown in Figure 8. The three graphs confirm the data gathered through
simulation, although the experienced latencies are slightly higher in the wide area experiment (due
in part to user-level processing time where limited CPU allocation decreases throughput). Nemo
outperforms Nice on the latency of packets requiring retransmission, as Nemo’s alternate data paths
translate into earlier packet-loss detection and faster recovery. We see that the slope of the plot
starting at 0.2 seconds latency is steeper to the right for Nemo, which is partially due to recovered
packets.

4 Related Work

All peer-to-peer or application-layer multicast protocols organize the participating peers in two
topologies: a control topology for group membership related tasks, and a delivery tree for data
forwarding. Available protocols can be classified based on the sequence adopted for their construc-

12

0 5 k 10 k 15 k

0.2

0.4

0.6

0.8

1.0

D
el

iv
er

y
R

at
io

 [%
]

Nice

0 5 k 10 k 15 k
Packet Sequence Number

0 5 k 10 k 15 k

NemoNice PRM(3,0.02)

Figure 8: Delivery ratio (PlanetLab,∼72 end hosts, high failure rate).

tion [2, 13]. In a tree-first approach [17, 19, 27], peers directly construct the data-delivery tree by
selecting their parents from among known peers. Additional links are later added to define, in com-
bination with the data-delivery tree, the control topology. With a mesh-first approach [13, 11], peers
build a more densely connected graph (mesh) over which (reverse) shortest path spanning trees,
rooted at any peer, can be constructed. Protocols adopting an implicit approach [3, 10, 28, 36] cre-
ate only a control topology among the participant peers. Their data delivery topology is implicitly
determined by the defined set of packet-forwarding rules.

Banerjee et al. [3] introduce Nice and demonstrate the effectiveness of overlay multicast across
large scale networks. The authors also present the first look at the robustness of alternative overlay
multicast protocols under group membership changes. Nemo adopts the same implicit approach,
and its design draws a number of ideas from Nice such as its hierarchical control topology. Nemo
introduces co-leaders to improve the resilience of the overlay.

A large number of research projects have addressed reliable and resilient multicast at the net-
work layer [26, 34, 35, 25, 22, 16]. A comparative survey of these protocols is given in [21, 30].
Like many of them, Nemo relies on reactive techniques to recover from packet losses. STORM [34]
uses hierarchical NACKs for recovery: NACKs are sent to parents (obtained from a parent list) until
the packet is successfully recovered or deemed obsolete. In the case of Nemo, NACKs are used
only to request missing packets from neighbors who indicated7 to cache them locally.

In the context of overlay multicast, a number of protocols have been proposed to improve re-
silience [4, 9, 31, 24]. ZigZag [31] is a single source P2P streaming protocol. Resilience is achieved
by separating the control and data delivery trees at every level, with one peer being held responsible

7Peers distribute the local cache state with every data packet they send.

13

0.01 0.1 1 10
Latency [s]

0.2

0.4

0.6

0.8

1.0
D

el
iv

er
y

R
at

io
 [%

]

Nemo
Nice
Nice PRM(3,0.02)

Figure 9: Latency CDF (PlanetLab,∼72 end hosts, high failure rate).

for the organization of the sub-tree and a second one dealing with data forwarding. In the presence
of failures, both peers share repair responsibilities. In Nemo, the forwarding responsibility of a peer
is shared among its crew members and its repair algorithm is fully distributed among cluster mem-
bers. PRM [4] uses randomized forwarding and NACK-based retransmission to improve resilience.
In contrast, Nemo relies on the concept of acrewand opts only for deterministic techniques for data
forwarding. SplitStream [9] and CoopNet [24] improve resilience by building several disjoint trees.
In addition, CoopNet adopts a centralized organization protocol and relies on Multiple Description
Coding (MDC) to achieve data redundancy. Nemo is a decentralized peer-to-peer multicast protocol
which offers redundancy in the delivery path with only a single control topology through the use of
leaders and co-leaders. We are exploring the use of data redundancy using forward error correction
(FEC) encoding [7].

5 Conclusions

We present Nemo, a new overlay multicast protocol designed for high resiliency from the ground up.
Through the introduction of co-leaders to minimize dependencies and the use of triggered NACKs
to detect lost packets, Nemo is able to achieve high delivery ratios under high stress at a lower

14

cost in terms of duplicate messages than alternative protocols and without penalties in terms of
additional delays. Detailed simulation and wide-area experimentation results presented have shown
the advantages of this approach.

Acknowledgments

We would like to thank Karsten Schwan and Peter Dinda, who kindly loaned us their equipment
for some of our experiments. We are also grateful to Jeanine M. Casler, Yi Qiao, Jason Skicewicz,
Ananth Sundararaj and Dong Lu for their helpful comments on early drafts of this paper.

References

[1] ANDERSON, T., SHENKER, S., SOTICA, I., AND WETHERALL, D. Design guidelines for
robust Internet protocols. InProc. of HotNets-I(October 2002).

[2] BANERJEE, S., AND BHATTACHARJEE, B. A comparative study of application layer multi-
cast protocols, 2002. Submitted for review.

[3] BANERJEE, S., BHATTACHARJEE, B., AND KOMMAREDDY, C. Scalable application layer
multicast. InProc. of ACM SIGCOMM(August 2002).

[4] BANERJEE, S., LEE, S., BHATTACHARJEE, B., AND SRINIVASAN , A. Resilient multicast
using overlays. InProc. of ACM SIGMETRICS(June 2003).

[5] BAWA , M., DESHPANDE, H., AND GARCIA-MOLINA , H. Transience of peers & streaming
media. InProc. of HotNets-I(October 2002).

[6] BIRRER, S., AND BUSTAMANTE, F. E. Resilient overlay multicast from ground up. Tech.
Report NWU-CS-03-22, Northwestern U., July 2003.

[7] BLAHUT, R. E. Theory and Practice of Error Control Codes. Addison Wesley, 1994.

[8] BUSTAMANTE, F. E.,AND QIAO , Y. Friendships that last: Peer lifespan and its role in P2P
protocols. Tech. Report NWU-CS-03-21, Northwestern U., June 2003.

[9] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., NANDI , A., ROWSTRON, A., AND

SINGH, A. Splitstream: High-bandwidth multicast in cooperative environments. InProc. of
the 19th ACM SOSP(October 2003).

[10] CASTRO, M., ROWSTRON, A., KERMARREC, A.-M., AND DRUSCHEL, P. SCRIBE: A
large-scale and decentralised application-level multicast infrastructure.IEEE Journal on Se-
lected Areas in Communication 20, 8 (2002).

15

[11] CHAWATHE , Y. Scattercast: an architecture for Internet broadcast distribution as an infras-
tructure service. Ph.D. Thesis, U. of California, Berkeley, CA, Fall 2000.

[12] CHU, Y.-H., GANJAM , A., NG, T. S. E., RAO, S. G., SRIPANIDKULCHAI , K., ZHAN ,
J., AND ZHANG, H. Early experience with an Internet broadcast system based on overlay
multicast. InProc. of USENIX Annual Technical Conference(June 2004).

[13] CHU, Y.-H., RAO, S. G., SESHAN, S., AND ZHANG, H. A case for end system multicast.
IEEE Journal on Selected Areas in Communication 20, 8 (October 2002).

[14] DEERING, S. E. Multicast routing in internetworks and extended LANs. InProc. of ACM
SIGCOMM(August 1988).

[15] DIOT, C., LEVINE, B. N., LYLES, B., KASSAN, H., AND BALENSIEFEN, D. Deployment
issues for the IP multicast service and architecture. InIEEE Networks special issue on multi-
casting(2000).

[16] FLOYD , S., JACOBSON, V., L IU , C.-G., MCCANNE, S.,AND ZHANG, L. A reliable multi-
cast framework for light-weight sessions and application level framing.IEEE/ACM Transac-
tions on Networking 5, 6 (December 1997).

[17] FRANCIS, P. Yoid: Extending the Internet multicast architecture. http://www.aciri.org/yoid,
April 2000.

[18] GUMMADI , K. P., DUNN, R. J., SAROIU, S., GRIBBLE, S. D., LEVY, H. M., AND ZAHOR-
JAN, J. Measurement, modeling and analysis of a peer-to-peer file-sharing workload. InProc.
of ACM SOSP(December 2003).

[19] JANNOTTI , J., GIFFORD, D. K., JOHNSON, K. L., KAASHOEK, M. F., AND O’TOOLE JR,
J. W. Overcast: Reliable multicasting with and overlay network. InProc. of the 4th USENIX
OSDI (October 2000).

[20] JIN , C., CHEN, Q., AND JAMIN , S. Inet: Internet topology generator. Technical Report
CSE-TR-433-00, U. of Michigan, Ann Arbor, MI, 2000.

[21] LEVINE, B. N., AND GARCIA-LUNA-ACEVES, J. A comparison of reliable multicast proto-
cols. Multimedia Systems Journal 6, 5 (August 1998).

[22] LEVINE, B. N., LAVO , D. B., AND GARCIA-LUNA-ACEVES, J. J. The case for reliable
concurrent multicasting using shared ack trees. InACM Multimedia(November 1996).

[23] M ILLS , D. L. Improving algorithms for synchronizing computer network clocks. InProc. of
ACM SIGCOMM(August 1994).

16

[24] PADMANABHAN , V. N., WANG, H. J.,AND CHOU, P. A. Resilient peer-to-peer streaming.
In Proc. of IEEE ICNP(2003).

[25] PAPADOPOULOS, C., PARULKAR , G. M., AND VARGHESE, G. An error control scheme for
large-scale multicast applications. InProc. of IEEE INFOCOM(March 1998).

[26] PAUL , S., SABNANI , K. K., L IN , J. C.-H.,AND BHATTACHARYYA , S. Reliable multicast
transport protocol (RMTP).IEEE Journal on Selected Areas in Communication 15, 3 (April
1997).

[27] PENDARAKIS, D., SHI , S., VERMA, D., AND WALDVOGEL , M. ALMI: An application level
multicast infrastructure. InProc. of USENIX USITS(March 2001).

[28] RATNASAMY, S., HANDLEY, M., KARP, R., AND SHENKER, S. Application-level multicast
using content-addressable networks. InProc. of NGC(November 2001).

[29] RHEA, S., GEELS, D., ROSCOE, T., AND KUBIATOWICZ , J. Handling churn in a DHT.
Tech. Rep. UCB/CSD-03-1299, Computer Science Division, U. of California, Berkeley, 2003.

[30] TOWSLEY, D., KUROSE, J. F., AND PINGALI , S. A comparison of sender-initiated and
receiver-initiated reliable multicast protocols.IEEE Journal on Selected Areas in Communi-
cation 15, 3 (April 1997).

[31] TRAN, D. A., HUA , K. A., AND DO, T. ZIGZAG: An efficient peer-to-peer scheme for
media streaming. InProc. of IEEE INFOCOM(April 2003).

[32] WANG, Z., AND CROWCROFT, J. Bandwidth-delay based routing algorithms. InProc. of
IEEE GlobeCom(November 1995).

[33] XU, J., KALBARCZYK , Z., AND IYER, R. K. Networked Windows NT system field failure
data analysis. InProc. of PRDC(December 1999).

[34] XU, X. R., MYERS, A. C., ZHANG, H., AND YAVATKAR , R. Resilient multicast support for
continuous-media applications. InProc. of NOSSDAV(May 1997).

[35] YAVATKAR , R., GRIFFOEN, J.,AND SUDAN , M. A reliable dissemination protocol for inter-
active collaborative applications. InACM Multimedia(November 1995).

[36] ZHUANG, S. Q., ZHAO, B. Y., JOSEPH, A. D., KATZ , R. H., AND KUBIATOWICZ , J. D.
Bayeux: An architecture for scalable and fault-tolerant wide-area data dissemination. InProc.
of NOSSDAV(June 2001).

17

	Computer Science Department
	Technical Report�NWU-CS-03-22
	December 13th, 2003
	Resilient Peer-to-Peer Multicast from the Ground Up
	Stefan Birrer and Fabián E. Bustamante
	
	Abstract

