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ABSTRACT
A thorough understanding of the network impact of emerging large-
scale distributed systems – where traffic flows and what it costs –
must encompass users’ behavior, the traffic they generate and the
topology over which that traffic flows. In the case of BitTorrent,
however, previous studies have been limited by narrow perspectives
that restrict such analysis.

This paper presents a comprehensive view of BitTorrent, using
data from a representative set of 500,000 users sampled over a
two year period, located in 169 countries and 3,150 networks.
This unique perspective captures unseen trends and reveals sev-
eral unexpected features of the largest peer-to-peer system. For
instance, over the past year total BitTorrent traffic has increased by
12%, driven by 25% increases in per-peer hourly download volume
despite a 10% decrease in the average number of online peers.
We also observe stronger diurnal usage patterns and, surprisingly
given the bandwidth-intensive nature of the application, a close
alignment between these patterns and overall traffic. Considering
the aggregated traffic across access links, this has potential implica-
tions on BitTorrent-associated costs for Internet Service Providers
(ISPs). Using data from a transit ISP, we find a disproportionately
large impact under a commonly used burstable (95th-percentile)
billing model. Last, when examining BitTorrent traffic’s paths,
we find that for over half its users, most network traffic never
reaches large transit networks, but is instead carried by small transit
ISPs. This raises questions on the effectiveness of most in-network
monitoring systems to capture trends on peer-to-peer traffic and
further motivates our approach. 1

Categories and Subject Descriptors
C.2.4 [Communication Networks]: Distributed Systems—Dis-
tributed applications; C.2.5 [Communication Networks]: Local
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and Wide-Area Networks—Internet; C.4 [Performance of Sys-
tems]: Measurement techniques

General Terms
Experimentation, Performance, Measurement
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1. INTRODUCTION
The network impact of popular, widely distributed services

has implications for capacity planning, traffic engineering, and
interdomain business relationships. Accurately characterizing and
understanding this impact requires a view of the service in question
that includes not only the traffic it generates and the networks it
traverses, but also the underlying user behaviors that drive it. Such
a comprehensive view is typically impossible to capture from any
single network or in-network monitoring system.

It comes as no surprise, then, that the overall impact of Bit-
Torrent, arguably the most widely distributed peer-to-peer system,
remains unknown.

In this paper, we present the first comprehensive study of
BitTorrent based on a longitudinal, representative view from the
network edge, including two years of application traces from over
500,000 user IPs located in 3,150 ASes and 169 countries.

Our study reveals BitTorrent usage trends and traffic patterns that
have been previously hidden or obscured by limited perspectives.
After demonstrating the representativeness of our dataset as a
sample of the overall BitTorrent system (Sec. 3), we discuss trends
regarding how users interact with the system. We find that while
the number of concurrent active users has decreased since 2008,
the overall volume of traffic that BitTorrent generates has grown by
12%, likely due in part to increased bandwidth capacities. While
session times have also decreased over this period (by 21%), the
temporal patterns behind these sessions are increasingly aligned
with those of rest of Internet traffic, despite BitTorrent’s known
high-bandwidth demands. This shift in usage patterns suggests an
increasing role for BitTorrent on ISPs’ infrastructure and costs.

After describing key trends regarding how BitTorrent is being
used, we then focus on where the corresponding traffic is flowing.
We leverage hundreds of millions of traceroute measurements
between peers to map the vast majority (89%) of BitTorrent traffic
to the networks it traverses. Our analysis reveals that the traffic
surprisingly exhibits significant locality across geography (32%
of BitTorrent traffic stays in the country of origin) and networks
(49% of traffic is intradomain or crosses a single peering or
sibling AS link). Using a recent network classification scheme,



we unexpectedly find that most traffic does not reach the core
of the network. Among other points, this raises questions on
the effectiveness of in-network monitoring approaches to capture
trends on BitTorrent traffic and further motivates our approach.

Using information about where BitTorrent traffic is flowing and
when it is generated, we model its contribution to ISPs’ costs. We
observe that, under the 95th-percentile billing model typically used
between transit ISPs and their customers, the time at which traffic
occurs can be as important as the volume of traffic. Incorporating
traffic volumes from a large, global ISP, using this cost model, we
find that current time-of-day patterns of BitTorrent often result in
significantly higher cost, byte-for-byte, when compared to other
traffic on the network.

In sum, our results highlight how limited perspectives for ana-
lyzing Internet-wide systems do not generalize, demonstrating the
need for comprehensive views when analyzing global features of
such widely distributed systems. One application of our analyses is
enabling ISPs to better understand the impact of such systems and
reason about the effects of alternative traffic management policies.

2. BACKGROUND AND RELATED WORK
P2P systems have received much attention from operators and

the research community due in part to their widespread popularity
and their potential network impact. Among P2P systems, BitTor-
rent is the most popular one, potentially accounting for between
20% and 57% of P2P file-sharing traffic [17, 22]. A number
of studies provide detailed summaries of the BitTorrent protocol,
conventions and dynamics [11, 12, 19, 20]. In this paper, we focus
on data connections between peers, the flows they generate, the
network paths they traverse and their temporal characteristics.

Numerous studies have analyzed P2P usage trends and attempted
to characterize the overall network impact from various perspec-
tives based on either simulations or limited perspectives [14,15,17,
21, 22, 25]. Conclusions vary considerably among studies, due in
part to variations in P2P usage in each ISP and the challenges with
identifying P2P traffic from network flow summaries (e.g., due to
randomized ports or use of connection encryption). Our study is the
first to examine the network impact of the BitTorrent P2P system,
based on the perspective of a set of users distributed over several
thousand networks worldwide. Since these traces are gathered from
within the application, they are not subject to classification errors.

Given the potential impact of P2P-associated cross-ISP traffic
on network operational costs, several studies have investigated
approaches to evaluate and improve P2P traffic’s locality [5, 6,
13, 16, 18, 30]. Xie et al. [30] base their results on testbed
evaluations in a small number of ISPs, Piatek et al. [18] use a single
vantage point outside of classical research platforms, and Cuevas
et al. [6] simulate peer interactions based on information derived
from tracker scrape results. As in some of our previous work [5],
we rely instead on a global view and actual BitTorrent connections
to evaluate locality aspects of this system. Here we move beyond
coarse-grained locality analysis in an attempt to understand the cost
associated with BitTorrent traffic using a detailed Internet map that
combines public BGP feeds with peer-based traceroute data [3]. As
we demonstrate in Section 5.1, network paths collected from end-
users are indispensable to determine the path that BitTorrent traffic
takes through the network.

Understanding how P2P-associated traffic affects an ISP’s tran-
sit charges is important for determining subscriber charges and
informing traffic engineering policies. Following the approach
used by Stanojevic et al. [23] (which examined the cost impact of
individual ISP subscribers’ traffic), we are the first to apply the
game-theoretic Shapley analysis to examine the relative cost of

interdomain BitTorrent traffic under the common 95th-percentile
charging model.

3. DATASETS
We now describe the traces we use in the rest of this study.

We posit that this dataset comprises the first comprehensive and
representative view of BitTorrent. The following paragraphs
demonstrate each of these properties in turn.

3.1 A Comprehensive View of BitTorrent
Our study is based on the largest collection of detailed end-

user traces from a P2P system. Specifically, we use data gathered
through users of the AquaLab’s ongoing Ono [5] and NEWS [4]
projects, our vantage points (VP), collectively representing more
than 1,260,000 installations. Our data collection software, im-
plemented as extensions to the Vuze BitTorrent client [28], peri-
odically report application and network statistics, excluding any
information that can identify the downloaded content.2 This dataset
is comprehensive in that it is longitudinal across time and covers a
broad range of networks and geographic regions.

To inform BitTorrent usage trends during the past year (Sec. 4),
we use data from the second week of November 2008 and every
two months from November 2009 through November 2010 (about
1 TB of trace data). For our detailed study of BitTorrent traffic,
we use continuous data from March through May 2010 (Secs. 5-6).
Altogether, our dataset includes traces from more than 500,000 IPs
located in 3,150 ASes and 169 countries.

This dataset includes per-connection transfer data, such as source
and destination (our vantage points and the peers they connect to),
current transfer rates at 30-second intervals, and the cumulative
volume of data transferred in each direction for each connection.
It also allows us to compute user session time, i.e. the length of
time that a user runs BitTorrent.

In addition to passively gathered data, the dataset contains
traceroutes to a subset of peers connected to each vantage point.
Targets for the probes are selected at random from connected peers,
and at most one traceroute is performed at a time (to limit probing
overhead). Each measurement is performed using the host’s built-in
traceroute command. From March through May 2010, our dataset
comprises 202 million traceroute measurements. In Sec. 5.1, we
discuss how we use these measurements to map per-connection
flows to the AS paths they traverse.

3.2 Representativeness
We now analyze the representativeness of our dataset as a sample

of activity in the Internet-wide BitTorrent system. While the
vantage points are limited by the set of users who voluntarily
install our extensions, we do not expect to find any strong platform
or language-specific bias that could impact our results. The
Vuze BitTorrent client, as well as our two instrumented plugins,
run on all major platforms and are translated into nearly every
language. There are several other potential sources of bias such as
extension-specific behavior and the distribution of vantage points
in terms of geography and networks, the peers they connect to,
and the BitTorrent clients those peers use. We address these in
the following paragraphs.

We first account for bias introduced by the extensions that our
VPs run. While NEWS uses BitTorrent traffic to detect service-
level network events without affecting the application, Ono biases
peer selection using CDN redirections to reduce cross-ISP traffic.

2Anonymized traces are available to researchers through the
EdgeScope project. [10]
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Figure 1: Distribution of BitTorrent users by continent for our
vantage points (left) and the set of all peers connected to our
vantage points (right) in November 2010. Both distributions
match closely but for small differences in North America and
Asia.

Network type Vantage points Remote peers
Large transit 4.07 % 5.18 %
Small transit 53.7 % 51.6 %

Access providers 42.3 % 43.2 %

Table 1: Portion of VPs and remote peers located in each type
of network, suggesting that the VP population is representative
of the general BitTorrent population.

We avoid this bias by filtering out all data for connections that Ono
selected for preferred peering.

Given the default random peer selection strategy in BitTorrent,
we expect that the remaining peers that the VPs connect to are
representative of the system as a whole. We evaluate this by testing
for similarities in geography, network topology, and BitTorrent
client use.

We compare the VPs’ geographic distribution to that of the peers
they connect to, using geolocation information obtained from a
popular IP-to-ASN mapping service [24]. Figure 1 shows, side
by side, the distribution of VPs and their connected peers per
continent. These distributions match closely, having equal portions
in Europe (52%), with small differences of 16/20% in North
America, and 23/19% in Asia.

For reference, we also compare the observed distributions with
those reported in previous studies and find strong similarities.
Zhang et al. [31] crawl tracker sites from 2008 to 2009 and report
the number of BitTorrent users for the top-20 countries sorted by
peer population. These data show that 49% of users are in Europe,
28% in North America and 18% in Asia. Note that these statistics
under-represent the fractions of European and Asian peers since
many countries in these regions did not appear in the top-20 list.
This explains why North American peers are a larger portion of the
peers (28%) relative to our distributions (16/20%). The reported
fractions of European and Asian peers match closely those found
in our dataset.

We also compare the distribution of VPs and remote peers
in terms of network topology, by contrasting the number of IP
addresses per network class, following the scheme recently pro-
posed by Dhamdhere and Dovrolis [7]. Table 1 shows that these
distributions align – the portion of peers in each network class
differs by at most 2%.

Last, we determine whether there is any significant bias based on
the types of BitTorrent clients that our VPs connect to. This could

Client Our Data (Nov 2009) Aug 2009 [27]
µTorrent 50.59 % 56.81 %

Azureus/Vuze 22.48 % 18.13 %
Mainline 9.28 % 11.79 %
BitComet 5.29 % 4.71 %

Transmission 2.68 % 2.95 %

Table 2: Comparison between connected client distribution in
our dataset in November 2009 and results from a swarm crawl
conducted in August 2009.

result, for example, from Vuze peers preferentially connecting to
other Vuze peers. We evaluate this by comparing the distribution of
BitTorrent clients connected to our VPs with that of an independent
source (Table 2). We use VP data from November 2009 and a
client distribution collected in August 2009 that is derived from
crawls of 400 swarms [27]. As the table shows, there is a strong
correspondence in both client rank and market share between the
two sets.

Overall, we find no strong evidence of significant bias in our
dataset using any of these metrics. In the following sections, we use
this dataset to analyze the network impact of BitTorrent, starting
with a description of observed usage patterns and trends.

4. BITTORRENT USAGE TRENDS
In this section, we use our BitTorrent traces to analyze several

key usage trends that affect the system’s network impact. In
particular, we find that despite reports of declining usage [17] the
absolute volume of BitTorrent traffic continues to rise. Further,
we find that BitTorrent’s temporal usage patterns are increasingly
aligned with diurnal traffic patterns, which has implications for its
contribution to ISPs’ costs.

4.1 Sampling Methodology
Obtaining representative, longitudinal snapshots of BitTorrent

traffic and user behavior is challenging, given the high degree
of churn in the system. To enable comparisons across multiple
time scales, we aggregate user statistics at one-hour granularity,
then use random sampling of our dataset to obtain a constant
number of users (1000) during each hour for inclusion in our
analysis. We repeat this random sampling 5 times to derive a
statistically significant average for each hour. In general, the
standard deviations of our samples are relatively small, and we
include corresponding error bars in our figures.

The following analysis focuses on comparisons using the second
week of every 2 months over the year of study. In some cases, we
use data collected in November 2008 to analyze trends over two
years.

4.2 Key Trends
In the following paragraphs, we examine trends in overall

BitTorrent traffic in terms of number of connected peers and per-
peer download volumes.

We begin by examining the volume of traffic generated by indi-
vidual peers. Figure 2 depicts average per-peer hourly download
volumes over one year, between November 2009 and 2010. As
the figure shows, BitTorrent’s network impact in terms of hourly
download volumes per-peer have grown consistently over this
period, increasing by 25% on average.

Beyond the download volumes generated by users, we find
two important and related trends that refer to (1) the number
of BitTorrent users and (2) the temporal patterns behind their



Nov ’09
Jan ’10

Mar ’10
May ’10

Jul ’10
Sep ’10

Nov ’10
0

20

40

60

80

100

120

140

160

H
ou

rly
Pe

er
D

ow
nl

oa
d

Vo
lu

m
e

(M
B

)

Figure 2: Average per-user hourly download volume between
November 2009 and 2010, showing that download volumes have
increased by 25%.
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Figure 4: Average daily peak-to-trough ratio of hourly peers
seen by continent, from 2008 to 2010. Peers in Europe, Oceania
and South America appear to have increasingly strong diurnal
patterns. The diurnal patterns of North American peers
remain consistently strong.

activities. Variations in the number of connected peers may hint
at changes in the size of the overall BitTorrent population. An
understanding of temporal patterns behind user activities, on the
other hand, is necessary to understand the potential contributions
of BitTorrent to congestion and near-peak transit charging rates.

We begin by plotting weekly timelines of the number of peers
connected to each vantage point in 2008 and 2010 (Fig. 3). We
group peers by location to highlight variations in usage over time
and across regions. Focusing first on Europe, the largest contributor
to connected peers, we see increasingly defined diurnal patterns
with peak usage in the late evening, and relatively larger peaks and
troughs in 2010 compared to 2008. This is surprising given the
logical, common belief that BitTorrent is used out-of-phase with
other applications because of the high load it imposes on users
connections [17].

To better illustrate changes in diurnal patterns for the number
of connected peers over time, we plot the average peak-to-trough
ratio of the hourly connected peers by continent (Fig. 4). Larger
ratio values indicate that greater portions of peers in each region
use BitTorrent at the same time. The figure shows that the ratio of
connected peers in North America has remained consistently high
over the last two years, with 80% more peers online during peak
usage. Meanwhile, diurnal patterns in Europe have grown more
pronounced during the same period. While the exact causes for
this behavior are beyond the scope of this paper, we speculate that
variations in copyright law and enforcement (which can affect how
long users leave BitTorrent running) across time and regions may
contribute to this effect.

Metric 2009 2010 ∆
A Peer download rate 110.9 138.7 +25.0%
B Unique peers per hour 276.6 248.0 -10.3%
C Concurrent flows 32.7 28.9 -11.6%
D (A/C) Per-flow download rate 3.39 4.80 +41.5%
E (B*C) Total flows 9040 7170 -20.7%
F (D*E) Total download rate 30700 34400 +12.1%

Table 3: Summary of calculations to determine overall
BitTorrent traffic, based on product of number of flows and
per-flow download rate. All download rates are in MB/hr. We
find that total BitTorrent traffic has increased 12.1% from 2009
to 2010.

Figure 3 also indicates that the average number of connections to
each vantage point per hour has decreased during the observation
period by 10% (compare the “All” curves in Figs. 3a and 3b). This
could be explained in part by a drop in the system popularity and/or
shorter session times. While it is difficult to quantify the former,
we can use our dataset to directly evaluate the latter. Figure 5
shows a typical distribution of session times, and also plots median
session time for vantage points in each continent from November
2008 to 2010. We find that, from 2009 to 2010, median session
times have decreased for each of the three main continents. Since
2008, session times in Europe, North America and Asia decreased
by 13%, 23%, and 20%, respectively.

Finally, we note that changes in the average number of connected
peers are dominated by a 30% drop in the number of European
peers. This is aligned with previous reports that European users
are increasingly using direct download sites in lieu of P2P [17]. In
contrast, usage in Africa and Asia increased by 75% and 45% from
2008 levels, indicating a growing presence in developing regions.

These results reveal conflicting trends that make it difficult to
estimate changes in aggregate BitTorrent traffic. With this in mind,
we compute a measure of the total BitTorrent traffic as the product
between the number of BitTorrent flows in the network and the
average per-flow hourly traffic volume. For this, we determine the
average number of concurrent connections (i.e. flows) maintained
by each peer and use it to compute the average per-flow download
rate and an estimate of the total flows in the system. Table 3
provides a summary of these metrics and calculations. We use the
Peer download rate (A) and the number of Concurrent flows (C) to
estimate the Per-flow download rate (D) and compute an estimate
of the number of Total flows (E) as the product of the number of
Unique peers per hour (B) and the number of Concurrent flows (C).
The Total download rate (F) is then computed as the product of the
Per-flow download rate (D) and the number of Total flows (E). The
reduction in the number of flows per peer results in an increase in
the per-flow download rate of 41.5%. Thus, while the total number
of flows in the system has shrunk by 20.7%, the BitTorrent traffic
has had a net increase of 12.1% between 2009 and 2010.

To summarize, we find that BitTorrent traffic volume is growing,
and its traffic is increasingly generated from shorter sessions that
tend to occur during peak hours. As we show in Sec. 6, these
temporal trends have a significant impact on transit charges. The
next sections build on the identified trends to determine which parts
of the Internet are most affected by the corresponding traffic and the
impact of this traffic in terms of costs and revenue.

5. WHERE BITTORRENT FLOWS
We now discuss where BitTorrent traffic flows through the

network. We begin with a discussion of how to map traffic flows to
the network paths they traverse. We use these mappings to study the
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Figure 3: Distribution of connected peers per hour, grouped by continent, in 2008 and 2010 (semi-log scale). Vertical grid lines
correspond with midnight, UTC. Note the increasingly defined diurnal patterns.
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Figure 5: CDF of average session time per vantage point for all
peers in Nov 2010 (top). Overall, session times have decreased
from Nov 2008 to Nov 2010. For peers in Asia, Europe, and
North America, median session times dropped by 13% to 23%
over this time interval (bottom).

geographic and topological characteristics of the traffic exchanged
between users from March through the end of May 2010.

5.1 Mapping BitTorrent Flows

In the following paragraphs, we address the problem of mapping
BitTorrent flows to the paths they traverse. In particular, we show
that publicly available path information such as BGP feeds are
insufficient for mapping the vast majority of BitTorrent traffic, and
address this by supplementing the public view with traceroutes
collected between our vantage points and their connected peers.
While the limitations of the public view of Internet topology are
well known [3], we focus on what this implies for estimating P2P
traffic locality and costs.

To infer traceroute-based AS path information, we combine over
202 M traceroutes between peers in our dataset with data gathered
from public BGP feeds [26] using heuristics from Chen et al. [3].
Altogether, our dataset consists of 13.1 M distinct AS paths.

We then determine the portion of BitTorrent flows that, for
the same time period, can be mapped to an AS path. First we
map each flow’s endpoint IP addresses to a source/destination AS
pair [24]. For each of the resulting 2.1 million AS pairs, we
determine whether an AS-level path exists, using either the paths
in the BGP public view alone or using a combination of the public
view with traceroute-derived AS paths. We say that such a path
exists for a pair if both the source and destination of the pair appear
in any path.

Figure 6 plots the cumulative distribution function of the portion
of BitTorrent traffic per vantage point that can be mapped to an
AS path using either BGP only paths (curve labeled “BGP”) or
the combined set of BGP and traceroute-derived paths (“BGP +
Traceroute”). The figure shows that paths available in the BGP
public view are not sufficient to account for the majority of flows
in our traces – over 80% of vantage points cannot even map half of
their traffic, while the median vantage point is able to map less than
14% of its traffic.

After adding traceroute-derived AS paths to this analysis, we can
map nearly all BitTorrent traffic to AS paths. In particular, despite
not having complete all-to-all traceroutes, for 90% of VPs we can
map at least half of their traffic and are able to map over 96% of
traffic for the majority (>50%) of peers.

These results show that when evaluating the Internet-wide im-
pact of a globally distributed system, it is necessary and sufficient
to supplement public views of Internet topology with topological
information gathered from the edge of the network. The remainder
of this paper uses this information to understand where BitTorrent
flows and its impact on ISP costs and revenue.
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Figure 8: Distribution of the location of connected peers,
according to the location of the vantage point, for November
2010. The VP’s locale is always more strongly represented than
in the “All” distribution.

5.2 Geographic Locality
While it is well known that BitTorrent is used in nearly every

region and country worldwide, it is unclear how much of its traffic
stays local. In this section, we show that traffic typically crosses
few country boundaries, and the average distance it travels for a
VP is strongly dependent on the VP location.

We first discuss the issue of locality of traffic. To represent this
graphically, at the continent granularity, we determine the portion
of each vantage point’s traffic that flows to or from each continent.
Figure 7 plots this as CDFs, where a point (x, y) for a given
continent indicates that for a fraction y of the peers, the portion
of their traffic flowing to endpoints in that continent is less than
or equal to x. Curves closer to the lower right indicate continents
receiving the largest share of peer traffic.

The figure includes these data for vantage points in each of the
top three continents (by number of BitTorrent users). We observe
that on average a VP exchanges more traffic with peers in the same
continent than in any other. The effect is strongest in Europe (75%
of traffic from European VPs stays within Europe), which contains
the largest portion of BitTorrent users. Both North America and
Asia exchange much larger portions of intracontinental traffic than
their user populations would indicate.

Some of the reasons for the observed locality include content
interest (e.g. based on language) as well as temporal trends – peers
in a continent tend to use the system at the same time (as shown in
Sec. 4). To test whether we find locality trends in traffic patterns,
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Tier Category [7] AS Count
1 – 10
2 Large Transit Providers 20
3 Small Transit Providers 2012

4 Content/Access/Hosting Providers 40993Enterprise Customers

Table 4: Description of each network tier, as well as the number
of networks in each tier. We define Tier 1 to consist of ten well-
known transit-free networks, a subset of ASes that are classified
as “Large Transit Providers” by Dhamdhere and Dovrolis [7].

we plot the geographic distribution of connected peers, grouped by
the continent for each VP (Fig. 8). The graph indeed shows that the
distributions of connections per VP continent is similar to those for
traffic.

To obtain a finer-grained view of how far aggregate BitTorrent
traffic travels, we plot a CDF of each vantage point’s traffic that
passes through up to C countries (Figure 9). For 80% of vantage
points, the majority of their traffic travels at most to one other
country. Of the total traffic, we find that 32% stays within the same
country, and an additional 41% travels to only one other country.

These results show that while BitTorrent’s flows are geographi-
cally diverse, the location of a user (and the popularity of BitTorrent
in that region) has a strong influence on the location of connected
endpoints. In aggregate, BitTorrent traffic exhibits surprisingly
high geographic locality – often traveling to at most one additional
country. In the next section, we evaluate whether this locality holds
when viewed in terms of the network topology.

5.3 Topological Locality
We now examine the topological properties of BitTorrent traffic

to determine which types of networks it traverses. We note that
while these results may be affected by ISP-imposed throttles on
interdomain traffic, our goal is to understand the impact of the
system in its current environment. For this analysis, we map traffic
to Internet tiers based on the classifications by Dhamdhere and
Dovrolis [7], last updated in January 2010. This work classifies
ASes into the tiers shown in Table 4, based on inferred business
relationships. We apply this to categorize peers and routers in our
dataset and find that, as one would expect, most BitTorrent users
are located in lower network tiers (Table 5).
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Figure 7: For each vantage point in a given continent, the proportion of its traffic according to the continent of destination. The
curves show strong locality at the continent-level; this is particularly the case for Europe where most users are located.

Tier-2 Tier-3 Tier-4
Vantage Points 13,838 181,981 143,368
VP ASes 17 611 2,524
Remote Peers 6,226,321 61,999,202 51,976,554
Remote ASes 18 1,363 14,562
Total ASes 18 1,364 14,573

Table 5: Distribution of vantage point and remote peer IPs and
ASes, by tier. As expected, most of our VPs and remote peers
are located in tier-3 and tier-4 networks.
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Figure 10: For each peer, the proportion of its traffic reaching
Tier T . The vast majority of traffic only reaches tier 3, with
significantly less traffic going to tier 1 or tier 2.

An interesting question related to the network impact of BitTor-
rent traffic is how deep into the “core” of the network it flows. We
want to understand whether the traffic more frequently enters large
transit providers or stays at lower tiers of the topology. To evaluate
this, we determine the portion of each vantage point’s traffic that
reaches tier T . For example, if a flow traverses from tier 4 to tier 2
and back to tier 4, the flow is counted as reaching tier 2. Figure 10
plots the result as a CDF for each originating tier. Curves near the
bottom right indicate tiers receiving the largest portion of traffic.

We find that tier-3 networks handle more BitTorrent traffic than
any other tier. While over 50% of the median peer’s traffic stays in
tier 3, less than 10% (20%) goes up to tier 2 (tier 1).

To understand the role of the endpoint locations on the spread
of BitTorrent traffic, we separate individual traffic flows by their
starting and ending Internet tiers, and determine the portion of that
traffic flowing to each of the other tiers. Figure 11 plots, for traffic
between Tier T and Tier U , the proportion of that traffic reaching

Tier V (such that V ≤ T ) as CDFs. As an example, Figs. 11a–
11c show that, for traffic with at least one endpoint in tier 2, the
majority of traffic stays in a tier-2 AS without passing through a
tier-1 network.

Overall, the figures show that BitTorrent traffic most often stays
in the same tier from which it originated. For instance, the trends
for tiers 3 and 4 – where the vast majority of BitTorrent users are
located – show that most traffic does not go above tier-3 (Figs. 11d–
11f). Further, for traffic between two tier-4 ASes, we see that the
largest component of traffic unexpectedly stays in tier 4. When
combined with results from geographic locality, this indicates that
much of BitTorrent traffic remains in the same region and can
be handed off among regional ISPs instead of using large transit
providers.

This section showed that BitTorrent traffic exhibits strong local-
ity, both geographically and in terms of network topology. In the
next section, we evaluate the economic impact on ISPs as a result
of these patterns.

6. ECONOMIC ASPECTS OF NETWORK
IMPACT

In this section, we address one of the key question driving P2P
research and ISP policies: how does the network impact of P2P
translate to costs and revenue for ISPs? The following paragraphs
present a detailed analysis of the potential impact of BitTorrent
traffic on the variable costs/revenues of ISPs. For our analysis,
we use detailed traces of BitTorrent traffic, comprehensive AS
topologies annotated with business relationships, and additional
information on interdomain traffic volumes from a large ISP.

6.1 Overview
Interdomain traffic is an important component of ISPs’ opera-

tional costs. A number of research efforts have focused on reducing
interdomain traffic generated by P2P systems [1, 2, 5, 30]. Earlier
studies have assumed that all interdomain traffic incurs charges. In
practice, however, charges are a function of both the total traffic
flowing over each interdomain link and the business relationships
between ISPs.

Thus, in the first step of our analysis, we map BitTorrent flows
to inter-AS links annotated with actual business relationships –
customer-provider, provider-customer, peer or sibling. To this end,
we use the algorithm proposed by Xia et al. [29], which leverages
the valley-free and selective export policies of BGP routing to infer
the relationship between connected ASes. This allows us to infer
relationships for 98.3% of the 222,675 AS links in our dataset.
We assume that transit charges occur only between customers and
providers, resulting in costs for the customer and revenue for the
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Figure 11: For each peer with data flowing between Tier T and U , the portion of that traffic that reaches up to Tier V .

provider. We further assume peering and sibling relationships to be
settlement free, with no side paying the other to carry traffic [8].

In the next step of our analysis (Sec. 6.2), we model the net
impact of those flows on ISP costs. A significant challenge is
the diverse and commonly confidential charging models for transit
agreements between ISPs. Absent this information, we first use
a basic cost model that focuses on variable costs, assigning transit
charges in proportion to the volume of traffic traversing a link. This
allows us to understand trends in the balance between revenue- and
cost-generating flows for the ASes in our dataset (Sec. 6.3).

Finally, we conduct case studies of the economic impact of
BitTorrent on several ISPs using the 95th-percentile charging
model (Sec. 6.4), in which the temporal pattern of traffic – not
just the overall volume – plays a significant role in determining
cost [23]. This burstable billing model is generally considered the
most popular model used between small, access networks and their
providers [9]. We have shown (Sec. 5) that a significant fraction
of BitTorrent traffic is handled by small transit providers near the
edge of the network and that this traffic is increasingly exhibiting
strong diurnal usage patterns (Sec. 4). While we cannot assign
dollar values to 95th-percentile traffic, we can determine whether
BitTorrent is relatively more expensive than the rest of the traffic
traversing each link.

6.2 Portion of Charging Traffic
In this section, we analyze BitTorrent traffic in terms of the types

of links that it traverses. To begin, we find that 8% of all traffic in
our dataset stayed in the same AS. Though this may seem to be
a small number, one should consider that peers in our dataset are
distributed across nearly 16,000 ASes. For these flows, we assume
that there are no transit charges and we exclude them from the
remainder of our analysis.

We focus then on interdomain traffic and compute the portion of
each AS’s total BitTorrent traffic that crosses links to its customers,
to its providers, and to its peers. This allows us to understand the
portion of BitTorrent traffic that traverses charging links and thus
contributes to ISPs’ costs.

We begin by describing summary results for tier-1 traffic (not
shown). Not surprisingly, none of this traffic flows to a provider
(by definition), but interestingly the tier-1 ASes experience sig-
nificantly more peering traffic relative to customer traffic. The
implication is that even when traversing tier-1 networks, BitTorrent
flows are relatively unlikely to incur variable charges.

For traffic in tiers 2, 3 and 4, Fig. 12 plots a CDF of the
proportion of per-AS interdomain traffic grouped by business
relationship. In tier-2 networks (Fig. 12a), the vast majority of
traffic crosses no-cost peering links, while a small portion of the
traffic crosses charging links. In the median case, over 95% of tier-
2 traffic crosses no-cost links. We also note that, on average, more
of their non-peering traffic traverses customer links than provider
links.

For tier-3 ASes (Fig. 12b), we again find that significantly more
traffic crosses peering links than provider or customer links; 25% of
these ASes send the majority of BitTorrent traffic to provider links.
Unlike with tier 2, provider traffic is much larger than customer
traffic for tier 3, indicating that these ISPs on average are paying for
rather than profiting from transit charges due to BitTorrent traffic.

Last, we analyze traffic distributions for tier-4 networks (see
Fig. 12c). As expected, only a small fraction of these ASes have
any customer traffic, so BitTorrent does not generate substantial
revenue here. We also see that most tier-4 networks are connected
either over peering or provider links. For half of tier-4 networks,
the majority of BitTorrent traffic is handled by provider links,
suggesting that BitTorrent is incurring significant transit charges
for these networks.

6.3 Traffic Ratios
While the previous graphs indicate the portion of traffic along

links for different business relationships, they do not allow straight-
forward calculations of the relative amounts of customer and
provider traffic for each AS (and thus which direction of charging
traffic dominates). Figure 13 plots CDFs of these ratios for each
tier, except for tier 1 where the denominator would be zero.
Values greater than one indicate cases where an AS receives more
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Figure 13: For each AS in Tier T , the ratio between traffic
on customer and provider AS links. More customer traffic
than provider traffic (a ratio > 1) indicates a net revenue (if
provider and customer traffic have the same cost). This shows
the proportion of ASes in each tier that have a net revenue.

customer traffic than it sends to providers (presumably generating
a net revenue). Overall, this is always the case for tier-2 ASes.
For lower tiers we find that a significant fraction of them do not
have any customer traffic, resulting in a ratio of 0. The ratio is
less than one most of the time, indicating that BitTorrent traffic is
costing these networks – only 17% of tier-3 and 15% of tier-4 ASes
with customer traffic have a ratio > 1. While this may seem to
indicate that BitTorrent is harmful to lower-tier ASes, it is difficult
to determine the relative cost of BitTorrent without understanding
the volumes of non-BitTorrent traffic over the same links (an issue
we address in Sec. 6.4).

The ratios above indicate when there is a net imbalance in
charged traffic volumes but do not show their relative size com-
pared to all BitTorrent traffic, including those flowing over no-cost
links. We now address this by computing the average revenue (or
cost) per byte for each AS (Fig. 14). This is defined as the balance
of charging traffic (customer bytes minus provider bytes) divided
by the total number of bytes flowing through the AS. When peering
traffic accounts for a large proportion of AS traffic, the revenue of
each byte of P2P traffic will be close to zero. However, when most
AS traffic is from providers (or customers), it will have a more
significant cost (or revenue) per byte for flows that travel through
its network.

In Figure 14, all tier-1 ASes have a net revenue (values > 0)
because, by definition, they do not have any provider links. In
addition, all tier-2 ASes have a net revenue as well, reflecting
the fact that the majority of their traffic is on peering, customer,
or sibling links. The ASes in tiers 3 and 4 have incrementally
larger average costs per byte overall, corresponding to the larger
proportions of traffic traversing their provider links.

While most tier-4 ASes do not generate revenue from BitTorrent
traffic, there are a few exceptions. This is explained by the fact that
the tier classification algorithm is not strictly hierarchical, so a tier-
4 AS can be a provider for another AS. In this case, large portions
of traffic can traverse this revenue-generating link, resulting in a net
profit per byte in the graph.

Finally, we attempt to quantify the relative scales of these costs
and/or revenues by calculating a basic “balance sheet” for each
AS in our study. In Fig. 15, we report customer minus provider
traffic for each AS in tiers 2–4. Since tier-1 ASes do not have any
providers, they have large net balances, several orders of magnitude
larger than the net balances shown here. The balances of tier-2
networks range from 12 GB to 13 TB. By comparison, we see that
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Figure 14: Average revenue per byte of BitTorrent traffic (i.e.,
the difference between customer traffic and provider traffic,
divided by total traffic) for each AS, grouped by tier.
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Figure 15: For each AS in Tier T , the difference between
customer traffic and provider traffic. In contrast to the data
in Figures 13 and 14, this perspective allows us to compare the
scale of the revenue or expenses of ASes by tier.

the net differences from tier-3 and tier-4 ISPs are relatively small.
Although tier-4 ASes had the largest average cost per byte of P2P
traffic, we see that they have relatively small net balances of traffic
compared to ASes in all other tiers.

6.4 Impact on 95th-Percentile Transit Costs
We now examine the cost of BitTorrent traffic under a 95th-

percentile charging model, with a goal of understanding the impact
of temporal trends in BitTorrent traffic on ISPs’ costs. This is
important because BitTorrent and network traffic are not uniform
across time (e.g. due to diurnal trends), and costs computed
under a 95th-percentile charging model are essentially set by usage
in the busiest hours for network usage, typically in the evening.
Intuitively, if BitTorrent traffic is more prevalent during these
peak hours than off-peak hours, then we say it is relatively more
expensive for the ISP, in comparison to the rest of the traffic.
Appendix A provides a detailed description of the 95th-percentile
charging model and the Shapley analysis that we use to determine
the relative cost of BitTorrent traffic.

For this analysis, we obtain traces of total link volume between
a major transit ISP “T ” and several of its providers (A, B) and
customers (C-G).3 In addition, we compute for each pair of ASes

3The identities of these ISPs are protected by nondisclosure
agreements.
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Figure 12: For each AS located in Tier T , the CDF of the proportion of its traffic traversing provider, customer, or peering/sibling
links.

the time series of BitTorrent traffic seen in our dataset. For both
data sets, we use 5-minute intervals, a resolution commonly used
in determining 95th-percentile charges. Both sets of traces are
from the same 1-week period, January 6-14, 2011, and thereby
are comparable and capture both weekday and weekend traffic
patterns.

Following the typical use of 95th-percentile billing, we focus on
the link direction with the greater 95th-percentile traffic volume.
For ISP T ’s providers, this is the inbound direction (toward ISP T );
for its customers, the dominant direction is outbound (from ISP T ).

6.4.1 “Relative Cost” Metric and Scaling
For each type of traffic that we study – BitTorrent and “all the

rest” – we compute that traffic’s “relative cost”. This is defined
as the ratio between its Shapley value (how much it costs) and
its overall fraction of traffic on the link. For example, if our
BitTorrent trace accounts for 10% of all traffic seen over a link, but
the Shapley value is 20% (e.g. if traffic occurs during peak hours),
then BitTorrent traffic’s “relative cost” is 2. Therefore, BitTorrent is
contributing more to defining the 95th-percentile transit costs than
the rest of the traffic. Using this metric, we can evaluate the relative
contribution of any subset of network traffic over a link.

Though we have detailed BitTorrent traces for the networks we
study in this section, it is important to note that there is no ground
truth information to determine the relative volume of BitTorrent
traffic compared to “all the rest” of traffic for the links that we
study. To address this issue, we assume that our BitTorrent sample
is representative of the larger population of all BitTorrent traffic on
the network (following from our analysis in Sec. 3.2). This allows
us to assess the relative cost of any BitTorrent traffic ratio by scaling
our time-series of BitTorrent traffic to the corresponding fraction of
overall link traffic.

Using the BitTorrent traffic ratio as a free variable, we scale each
value in our time-series of BitTorrent traffic by a factor such that
the sum of BitTorrent bandwidth matches a given percentage of
the total aggregate link volume over the week. Then, we examine
the impact of different fractions of BitTorrent traffic over a link on
BitTorrent’s role in setting the 95th-percentile costs.

6.4.2 Relative Impact of BitTorrent on
95th-Percentile Costs

We evaluate now the relative cost of BitTorrent traffic over
several links between a large transit provider and several of its
customers and providers.

First, we examine the trends in the relative cost of BitTorrent
traffic as we vary the percentage of BitTorrent traffic (X%) out
of the total traffic on the link. To compute the relative cost for
each X , we subtract the BitTorrent trace from the total trace to
obtain the time-series of “all the rest” of the traffic and run the

ISP Cost X-Corr C.V.
Customer D 1.03 -0.4 109%
Provider A 1.15 -7.1 130%
Customer C 1.21 0.8 160%
Customer G 1.43 -0.2 186%
Provider B 1.50 3.2 188%
Customer E 1.52 1.6 158%
Customer F 1.83 7.4 325%

Table 6: For each link we study, we compute the cross-
correlation offset (“X-Corr”) that resulted in the best overlap
between BitTorrent and total traffic, and the coefficient of
variation (“C.V.”) of the time series of BitTorrent traffic.
We sort the links by increasing relative cost (“Cost”, when
BitTorrent is scaled to 10% of total traffic). Increased variation
in the BitTorrent traffic curve is strongly correlated with
increased relative cost of that traffic.

analysis described in Appendix A. A relative cost of 1 means that
the Shapley value is the same as the fraction of traffic – BitTorrent
traffic costs the same as other traffic, in terms of setting the ISP’s
95th-percentile costs. Relative costs greater than 1 mean that
BitTorrent is contributing more to setting the 95th-percentile costs
than all the rest of the traffic crossing the link.

Figure 16 shows the results of this analysis for two providers
and two customers of ISP T . Among these results, we find
significant diversity in terms of the relative cost of BitTorrent,
ranging from 0.95 (relatively less expensive) to over 1.5 (relatively
more expensive). In general, BitTorrent tends to be relatively more
expensive than the rest of traffic on the link. Note that as we
increase the percent of BitTorrent traffic, the relative cost metric
by definition approaches 1, which explains the downward trends in
the figures.

To explain the diversity of the relative cost of BitTorrent traffic
over different links, we characterize each of our BitTorrent traces
by its variations over time, as well as how it aligns with the overall
traffic on the link. To represent how much BitTorrent traffic varies
over time for each link, we use the coefficient of variation (i.e.,
the normalized dispersion of values in a distribution). To capture
the temporal alignment between BitTorrent traffic and total traffic,
we conduct a cross-correlation analysis between normalized time-
series of traffic data and report the time offset at which we found the
peak overlap between BitTorrent and total traffic. Negative offsets
occur if the peak in BitTorrent traffic appears later than the total
traffic.

Table 6 shows the results of these analyses for all of ISP T ’s links
that we study, sorted by increasing relative cost (when BitTorrent
is scaled to 10% of total traffic). The relatively small values (e.g.,
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(d) ISP T to Customer D

Figure 16: Trends in the relative cost of BitTorrent traffic for links between ISP T and several of its providers and customers, as we
scale BitTorrent traffic to various percentages of the total link traffic.

≤ 2) in the third column indicate that the peak traffic for BitTorrent
indeed coincides with peak volumes for the rest of traffic for most
of these links. Moreover, we find that larger variations in BitTorrent
traffic (i.e., burstiness captured by the coefficient of variation
metric) correlate strongly with higher relative cost. Customer E is
the only exception to this trend, which can be explained by the fact
that Customer E’s BitTorrent traffic is more closely aligned with
total traffic (according to the cross correlation metric) than either
Provider B or Customer F.

6.5 Summary
In summary, this section showed that capturing the impact of

BitTorrent on network costs requires a global view of where traffic
flows as well as an understanding of the business relationships and
charging billing models used. We found that large portions of
BitTorrent traffic flow over settlement-free links, and the portion of
interdomain traffic generating charges varies significantly among
ISPs. This analysis also shows that the recent trend toward more
diurnal usage patterns leads to traffic that is closely aligned with
peak usage for other Internet traffic, which has a significant impact
on the common 95th-percentile charging model. While the relative
cost of BitTorrent traffic is variable, we found it to be generally
more expensive than other traffic for links we evaluated.

These results can inform ISPs’ decisions about the impact and
efficacy of specific traffic management policies. Our BitTorrent-
focused analysis is an example of how applications can have varied
impacts on ISP costs, based on when the traffic occurs.

7. CONCLUSION
In this paper, we demonstrated the importance of a compre-

hensive view when evaluating the network impact of a globally
distributed system like BitTorrent. By incorporating application
traces gathered from hundreds of thousands of IPs, we answered
key questions regarding trends in BitTorrent’s traffic volumes and
user behavior, where BitTorrent traffic flows, and whether such
traffic incurs net costs or produces revenue for ISPs.

This unique view allowed us to reveal several properties of
the system previously hidden from studies based on limited per-
spectives. First, we used a longitudinal view of user behavior
to show that the BitTorrent system continues to evolve, both in
terms of when and where the application is being used. We then
evaluated the impact of this behavior on where BitTorrent traffic
flows geographically and topologically, an analysis that requires
extensive traceroutes between P2P users. We found that despite its
global reach, BitTorrent is able to remain local for large portions of
its traffic. Further, our results show that most traffic generated by
BitTorrent users stays at or below tier 3. Some of our results call

into question the ability of in-network monitoring approaches to
capture salient features of widely distributed systems, particularly
when deployed in higher Internet tiers.

Last, we evaluated the economic impact of BitTorrent traffic on
ISPs’ variable costs. Using inferred business relationships between
ISPs, we showed that most BitTorrent traffic flows over cost-free
paths and that it generates substantial revenue potential for many
higher tier ISPs. We also highlighted the importance of the tem-
poral pattern behind the generated traffic under the common 95th-
percentile charging model. By combining traces from operational
interdomain links with our corresponding BitTorrent traces, we
determined that the relative cost of BitTorrent is variable and tended
to be higher than other traffic for several ISPs.

In summary, we emphasize that no single aspect of this study
alone – application traces, topology information and in-network
traces – were sufficient to develop a complete picture of a widely
distributed system such as BitTorrent. Only in combination did
these perspectives allow us to view the system as a whole and its
impact on the network.
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APPENDIX
A. 95TH-PERCENTILE AND SHAPLEY

95th-percentile billing is one of the most common models used
by providers to charge for traffic over interdomain links [9].
Under this billing model, costs are determined by near-peak usage,
calculated by the 95th-percentile value at fixed intervals (e.g. 5
minute bins) over each billing cycle (usually 1 month). As a result,
the effective cost of each byte of traffic varies depending on the
particular time of day – bytes sent during times of high usage are
more expensive than off-peak bytes.

Following the approach in [23], we use the game-theoretic con-
cept of Shapley value to compute the average marginal cost con-
tribution of individual classes of traffic under the 95th-percentile
billing model.4 This is obtained by averaging the marginal increase
in 95th-percentile cost over all possible “arrival orders” for the
classes of traffic being examined.

In our study of “BT” and “Other” traffic, we have two arrival
orders: [BT, Other] and [Other, BT]. Given a function v95th
that returns the 95th-percentile value of a series of bandwidth
measurements, we compute the Shapley value of BitTorrent traffic
by averaging the marginal contributions:

m1 = v95th(BT )

m2 = v95th(Other +BT )− v95th(Other)
SVBT = (m1 +m2)/2

Since the Shapley value is efficient (i.e. the sum of the average
marginal costs equals the total cost), we can compute the proportion
of the total cost attributable to BitTorrent traffic:

pBT = SVBT /(SVBT + SVOther)

Finally, we compare the proportion of total cost attributable to
BitTorrent traffic relative to the overall fraction of BitTorrent traffic
fBT carried over the network:

Relative CostBT = pBT /fBT

When the relative cost of BitTorrent is > 1, that means that
increases in BitTorrent traffic are temporally aligned with increases
in the total traffic (typically during waking hours) and BitTorrent
traffic is comparatively more expensive than other traffic. Likewise,
a relative cost < 1 means that BitTorrent traffic is comparatively
less expensive than other traffic, and tends to occur during off-peak
(e.g,. overnight) periods.

4This analysis is general to any such cost model.
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