Crowdsensing Under (Soft) Control

John P. Rula
EECS
Northwestern University
Evanston, Illinois 60201
john.rula@eecs.northwestern.edu

Abstract—Crowdsensing leverages the pervasiveness and
power of mobile devices, such as smartphones and tablets, to
enable ordinary citizens to collect, transport and verify data.
Application domains range from environment monitoring, to
infrastructure management and social computing. Crowdsensing
services’ effectiveness is a direct result of their coverage, which is
driven by the recruitment and mobility patterns of participants.
Due to the typically uneven population distributions of most
areas, and the regular mobility patterns of participants, less
popular or populated areas suffer from poor coverage.

In this paper, we present Crowd Soft Control (CSC), an
approach to exert limited control over the actions of participants
by leveraging the built-in incentives of location-based gaming and
social applications. By pairing crowdsensing with location-based
applications, CSC allows sensing services to reuse the incentives
of location-based apps to steer the actions of participating
users and increase the effectiveness of sensing campaigns. While
there are several domains where this intentional movement is
useful such as data muling, this paper presents the design,
implementation and evaluation of CSC applied to crowdsensing.
We built a prototype of CSC and integrated it with two location-
based applications, and crowdsensing services. Our experimental
results demonstrate the low-cost of integration and minimal
overhead of CSC.

I. INTRODUCTION

Smartphones and tablets are rapidly becoming a ubiquitous
and powerful computing and sensing platform. It is estimated
that over 96% of the world’s population today (128% in
developed nations) has a mobile phone and the fraction of
smartphones among them is increasing daily [26]. Today’s
smartphones are commonly equipped with several gigabytes of
storage, multiple cameras, microphones, motion and location
sensors, as well as networking options including cellular,
Bluetooth, and WiFi.

The pervasiveness and power of these devices have inspired
a variety of community sensing services that crowdsource
the monitoring, data transport and reporting tasks to device
carrying participants. Examples of such mobile services range
from WiFi mapping, waste disposal [5], place and route
characterization [8], [36], transportation analysis [13] and
noise pollution monitoring [24], to cite just a few.

For many of these services, their effectiveness is a direct
result of their coverage. A noise pollution map should at
least include every area people visit. Coverage, in turn, is
driven by the scale and mobility patterns of participants. Given
the typically uneven population distribution, and the regular

Fabian E. Bustamante
EECS
Northwestern University
Evanston, Illinois 60201
fabianb @eecs.northwestern.edu

mobility patterns of participants, areas will suffer from poor
coverage [7].

The challenge is to ensure coverage without depending
on large-scale adoption or particular mobility patterns. We
address this challenge building on a simple idea — reuse the
incentives mechanisms in location-based gaming and social
networking apps to exert limited control over people’s actions.
We call this approach called Crowd Soft Control (CSC).

In order for CSC to become viable within the domain of
crowdsensing, CSC needs to provide high utility to sensing
researchers with minimal impact to the hosting applications.
In light of these, we designed CSC around the following
three guidelines: it should be easy to integrate, not impact
application user experience and not limit the functionality
of crowdsensing services. CSC must be simple to incorpo-
rate into existing mobile applications in order for it to be
adopted by developers. Similarly, CSC also cannot hinder
the intended functionality or user experience of the host
application. This includes any performance penalties imposed
from the background sensing service, and any location or
incentive transformations. Finally, CSC must allow fully ca-
pable crowdsensing services, and support resource sharing
between multiple sensing campaigns. While we present the
implementation and evaluation CSC applied in the context
of crowdsensing services, there are several domains where
this intentional movement could be beneficial (such as data-
muling).

Contributions: We make three main contributions: (1) We
extend Crowd Soft Control, first presented in an earlier
position paper [34], an approach to leverage the incentives
of existing location-based application to steer participants in
crowdsourced sensing. (2) We describe the design (§ III) and
implementation of a full CSC prototype and its integration in
different example applications (§ IV). (3) We report real-world
evaluation results of our ideas with 2 different applications,
and example crowdsensing tasks to demonstrate the low-
overhead and high effectiveness of Crowd Soft Control (§ V).

II. CROWD SOFT CONTROL

Crowdsensing — defined as individuals with sensing and
computing devices collectively sharing information to measure
and map phenomena of common interest [14], has seen rapid
growth over the last few years. Much of this growth has
come from the foreseen and eventual availability of pervasive,

©)012/© 055

m N
y@ 1 New Animal Discovered: Dormouse

Fig. 1. An example mobile location-based game — “Rescue Rush”. Users
(represented as the giant cat) earn points by passing over game objects
projected to onto their physical locations. CSC proposes to couple game
objectives with crowdsensing tasks.

always-connected, resource-rich mobile devices (e.g., [5], [8],
[36], [13], [24]).

Crowdsensing services have typically followed either a
participatory or opportunistic approach. Participatory crowd-
sensing explicitly involves users’ actions, while opportunistic
crowdsensing operates without requiring user involvement.
Independent of the adopted approach, the effectiveness of
most crowdsensing campaigns is largely a function of the
coverage of its participants. For instance, the value of noise
pollution studies for city planners and the effectiveness of
the resulting policy decisions are a direct function of the
fidelity and coverage of the resulting noise maps [11]. To
ensure the necessary coverage, previous crowdsensing services
have assumed, explicitly or not, large recruitments and either
random or semi-random mobility patterns for its partici-
pants [42], [10], [30]. Most deployments, however, tend to
have limited coverage/recruitment. Limited scale combined
with the mobility patterns of humans, which have been
shown to be highly predictable independently of the traveled
distance [38], means that most areas of interest will go
unmapped.

The same pervasiveness of sensor rich devices have enabled
a growing number of location-based gaming and social appli-
cations [27], [12], [19], [29]. These applications bridge the gap
between the virtual world and the physical world. Location
based games such as Parallel Kingdom or Google’s Ingress
have mobile players interact with an augmented reality. Ingress
is a massively multiplayer location based game. There have
been suggestions that Google may be using this game not only
for entertainment, but for collecting geo-tagged information as
well [17]. Parallel Kingdom is another recent location-based,
multiplayer game set in a virtual, augmented world. In these
parallel kingdoms, users can claim territories based on their
GPS location or by making friends who invite them to travel
to new places. Check-in services by Foursquare and Facebook
allow users to ‘“check-in” to locations such as restaurants
and points of interest, earning rewards such as badges and
business discounts in the case of Foursquare. CSC leverages

the incentives of this growing class of apps to address key
challenges in crowdsensing.

A. Incentive-reuse for Control

A number of projects have began to explore incentive
mechanisms to aid recruitment and to influence participant
behavior in mobile crowdsourcing. While some studies have
attempted to characterize part of the space (e.g., [32], [35]),
largely looking at different macro incentive structures such
as micro-payments, the variety and effectiveness of incentive
mechanisms in this context is a topic of open research.

Rather than designing new incentive mechanisms, CSC
reuses existing incentives mechanisms already known to work.
Again using Ingress as an example, a recent survey of its users
found that 79% of them were willing to travel up to 10km
as part of the game [23]. In a related concept, gamification
tries to provide incentive to users by adding certain gaming
elements such as badges and leaderboards to traditionally un-
gamed actions. In contrast, CSC reuses the built-in incentives
in existing games and social network applications, at the
same time leveraging their existing user-base and recruitment
efforts [42].

Consider the following scenario. Alice, an environmental
scientist, is trying to generate a noise pollution map of
a growing urban area. Given the large area of study, she
decides to implement this using crowdsensing to leverage the
high-end microphones available in many smartphones today.
Alice quickly identifies, in her first try, that despite a decent
participant base most of the noise samples seem to come
from a few, clearly popular, areas in the city. For her second
try, Alice turns to CSC and begins collaborating with Bob,
the author of a virtual scavenger hunt game. Alice provides
the areas and times from which she needs noise samples for
her noise pollution mapping service to CSC. These sensing
requests are translated into requests for individual players of
Bob’s game and inserted into the game space at the target
locations and times. When a player achieves an objective as
part of gameplay, the CSC run-time library captures the Alice’s
requested noise sample and reports this to her noise mapping
service.

While we have focused our discussion on steering mobility,
the soft control afforded through CSC can help crowdsensing
services in other ways such as improving the quality of the
sensing samples (e.g., longer noise samples, in our example) or
the efficiency of sensing data transport through a data-muling
service. In Park et al. [28], for instance, the authors illustrate
the impact of mobility and loiter time of participants in the
success and performance of a data muling service and show
that intentional mobility, in contrast with opportunistic mobil-
ity, may be necessary for many common sensor deployments.

The following sections outline the design and implemen-
tation of CSC, and illustrate our ideas in the context of a
crowdsensing application.

IIT. CSC DESIGN

CSC is based on the idea of pairing mobile application
incentives to the needs of the underlying crowdsensing service.

In order to provide high utility to sensing researchers with
minimal impact to hosting applications, CSC follows three
key guidelines: it should be easy to integrate, not impact
application user experience and not limit the capability of the
crowdsensing service. CSC must be simple to incorporate into
existing mobile applications in order for developers to adopt it.
Similarly, CSC also cannot hinder the intended functionality
or user experience of the host application. This includes any
performance penalties imposed from the background sensing
service, and any location or incentive transformations. Finally,
CSC must allow fully capable crowdsensing services, and
permit resource sharing between multiple sensing campaigns.

Figure 2 illustrates the key CSC architectural components
and a typical workflow for a researcher’s sensing campaign
requirements. Researchers submit a set of Campaign Require-
ments to the Experiment Manager, a part of the CSC Cloud
Service. When an augmented Host Application makes a request
to CSC, it passes through the CSC Device Service on the
mobile device, where the request it received by the Broker.
The Broker matches the request to a set of sensing campaigns,
and distributes at set of discrete Sensing Tasks back to the
application.

In the following section, we describe the problem of Crowd
Soft Control, and define its application to crowdsensing.
We the describe the three main design components, the
Researcher, the CSC Cloud Service, the CSC Device Runtime
and the Host Application, and, define the interfaces which exist
between them.

A. Problem Description

It is possible to formulate CSC as an optimization problem:
to maximize the value of each paired application location to
the associated sensing campaigns, while minimizing the cost
incurred to the hosting application.

Each mobile application A has a set of locations L bound
to the application’s context, and related incentives Z (e.g.
the value of a ghost in a GhostHunting game). Each sensing
campaign C has a particular phenomena which it wishes to
monitor through participatory sensing, and its own set of
locations to test, L.

Each sensing location, ¢, has a value v(¢) to each campaign.
This value is determined by each campaign C' and depends
highly on the phenomena being investigated. This value is
also dependent on the existing measurements recorded by the
sensing service, and the temporal properties of the phenomena
itself. For instance, the authors of [18] show that the value
of each measurement in a Gaussian process can be derived
through the mutual information of each new measurement.

Each CSC modification to a host application incurs a cost,
potentially zero, by deviating from that host application’s
original execution. Depending on the nature of the underlying
host application, locations can be translated to a more pre-
ferred location, ¢, for a sensing campaign. The cost of each
translation, ¢, (¢, (), depends on the behavior of each host
application. For example, the cost for changing locations can

Experimenters CSC Cloud Service

Sensing

Campaign

Sensing

Campaign
(1) Experimenter submits
Campaign Requirements

(4) Matching requirements
translated to Sensing Tasks

(5) Scheduler adds priority
to Sensing Tasks

Participant
Devices

Experimenter
Portal

‘ CSC Broker

Scheduler

Registration
Server
Experiment
Manager

jo
£
58
g
55
X=

(2) Host application makes
a request for locations to
device middleware

CSC Device Service

(3) Device middleware contacts
CSC Cloud Service

(6) Host application receives set of
Sensing Tasks and incorporates
them into gameplay

Fig. 2. CSC Architecture and workflow.

be the distance between the original point ¢ and the preferred
point £, normalized against an upper bound radius.

CSC also modifies or reassigns the assignment of incentives
to host applications. Again, this changes the original applica-
tion execution, incurring a cost, ¢z (4,%s). The magnitude of
this cost is also dependent on the nature of the host application.

For each set of locations used by an application, CSC
attempts to minimize the net cost for each set of points,
net cost = e (0, 4s) + cz(1,1s).

B. CSC Interfaces

CSC presents two interfaces: the researcher submitting sens-
ing campaign descriptions (Campaign Requirements) and the
host application that accepts CSC location recommendations
(Sensing Tasks) and incorporates them into the application
space.

1) Interface with Sensing Researchers: Since CSC modifies
host application execution through a combination of location
translations and incentive modifications, application develop-
ers are required to modify their application code. To ease this
requirement, we have designed the interface between CSC and
host applications to be as simple as possible.

Crowdsensing researchers, such as Alice in our previous
example, issue a set of Campaign Requirements associated
with a given sensing campaign. Campaign requirements in
CSC, similar to those in [9], [30], specify the physical bounds
of their sensing campaign and the parameters of the sensors
used. Figure 3 shows an example set of requirements for the
noise sampling campaign.

We chose a simplified set of requirements. These require-
ments state the location, time and action to be taken by a
CSC registered device when sensing, as well as the number
of samples needed (frequency).

Location is stated in terms of latitude and longitude, and
optionally altitude, heading, and pitch. Time includes date and
clock time for launching a sensing action. Both location and
time are stated as ranges (e.g., start and end time), rather than
specific points

<requirements>
<area>
<location>
<point >42.3;-87.65</point>
<point >42.56;—-87.554</point>
<point >42.23;-87.345</point>
<point >42.3,—-87.55</point>
</location>
</area>
<start—time>2011-08-03 11:23:54 </start —time>
<end—time >2011—-9-03 11:59:59 </end—time>
<action>
<sensor>microphone </sensor>
<duration units="seconds”>3</duration>
</action>
<frequency units="hour”>25</frequency>
</requirements>

Fig. 3. Example Campaign Requirements for a sensing campaign capturing
noise pollution.

Actions states the parameters for the sensing action re-
quested which depends on both the sensing campaign and
particular devices. For example, the microphone action con-
tains parameters such as the duration of the recording and the
sampling rate.

2) Interface with Host Application: These set of broad re-
quirements are translated into individual tasks and distributed
to users of integrated host applications, such as players of
Bob’s virtual scavenger hunt game. Bob’s scavenger hunt game
first retrieves the set of points which it would display to the
user, and passes them to the CSC Device Runtime as a set of
locations. From this set of original locations, the CSC Device
Runtime generates a new set of preferred locations. These
Sensing Points contain the new preferred locations, as well
as the priority of each location as a number between 0 and
1. The host application incorporates this updated location and
incentive information into its current context.

Host applications become part of the CSC platform by
adding a few lines of code (25 SLOC in an example appli-
cation § V-B). CSC provides interfaces for the developer to
incorporate spatial and temporal constraints and priority of a
sensing task into its execution. Incorporating the spatial and
temporal constraints of a sensing task is relatively straight-
forward for location-based applications. Sensing task location
and temporal targets can be incorporated as new or modified
targets (e.g., changing the location of a game objective) in an
application. In addition, application developers can account for
sensing task priorities by selecting among possible objectives
or adjusting relative incentives (e.g., points in a scavenger
hunt) in their application.

The host application has no knowledge of the underlying
sensing task. All information regarding which sensor to use,
and sensing campaign information is maintained in the CSC
Device Runtime.

C. CSC Cloud Service

The CSC Cloud Service consists of four main components:
the Experiment Manager, the Registration Service, the Broker

and the Report Manager. The Registration Service handles
the registration of the mobile device, researcher, and host
application, and distributes authentication keys to each party
be used within CSC services. The Experiment Manager
accepts requests submitted from researchers, holds budgeting
information about the number of sensing tasks distributed
and completed, and can be queried from other CSC services
to return experiments within a spatial or temporal range.
The Report Manager tracks the state information of assigned
sensing tasks as well as the corresponding sensing reports
issued by devices. These reports, which can be aggregated
similarly to AnonySense [9], are used to respond to queries
from researchers. The CSC Broker uses sensing requirements,
device context and CSC platform policies to coordinate re-
source allocation between researchers and participant devices.
The Broker combines the set of experiment requirements (from
the Experiment Manager), the history of current and past
sensing task assignments (from the Report Manager), and the
current advertised state from the mobile device to generate a
set of task assignments.

1) Matchmaking and Scheduling: CSC implements a 3-
part scheduling between the CSC Cloud Service and the CSC
Device Runtime: (i) the scheduler first matches campaign
requirements between the capabilities of CSC hosting applica-
tions, (i4) calculates preferred locations, and (i7¢) determines
optimal incentive modifications.

The Matchmaking returns a set of experiments which are
compatible with the requesting mobile device. Within the CSC
cloud service, the Experiment Manager offers an interface
to query for compatible requirements. This query takes a
state vector containing a location, time and set of available
actions, and returns a set of experiments. CSC treats each
experiment requirement as a multidimensional volume with
each axis represented by experiment parameters (i.e. latitude,
longitude, time, available actions). Each request represents a
multidimensional point in space. Compatible experiments are
found by determining if the point is surrounded by the polygon
in each dimension as described in Sutherland et al. [39].

With the set of campaign requirements selected, the next
step of CSC scheduling is to find the location translations
from the set of original locations provided by the CSC hosting
application, which maximize the net value given the value of
each point to the sensing campaign, v(¢), and the cost to the
host application cy, (¢, £s).

When computing the optimal set of preferred locations, the
value of each sensing location is highly dependent on phenom-
ena being sensed. There exist several methods to determine
the value of a measurement obtained from optimal sensor
placement problems, including the use of entropy [31], mutual
information [16] and spatial metrics [15]. For simplicity of
implementation, our system assumes a uniform distribution
of each phenomena in space, and calculates the value based
on the geographic distance between each proposed point and
each existing measurement. While this may not be optimal for
many sensing phenomena, the system can be easily extended
to include any of the methods described above.

Once the set of preferred locations has been obtained, the
scheduler then assigns normalized incentive values based on
the results of the value function for each preferred location.
These results are then returned to the CSC Device Runtime
where they are delivered to the host application for integration.

Our design focuses on generalizing the interface between
sensing campaigns and host applications. However, one can
imagine the use of predictive mobility models similar to Reddy
et al. [33], or history based models which track compliance
and mobility under different mobile applications used with
CSC, however, these enhancements are out of the scope of
this paper.

D. CSC Device Runtime

The CSC Device Runtime is made up of the CSC Device
Service (daemon) and the CSC Device Libraries. The CSC
Device Service handles device registration, communication
with CSC clouds services, and all sensing actions within CSC.
The Device Libraries are integrated into each host application
and communicate between that application and the CSC device
service.

At initialization, CSC determines the sensing capabilities
of the device and registers it with the CSC Cloud Service.
The heterogeneity of mobile devices means that different
devices contain different sensors and possess different ca-
pabilities. Phones resources can range in the number and
quality of microphones and cameras, the presence of com-
pass, accelerometers, gyroscopes, light and proximity sensors.
Registration allows a device to announce its presence to CSC
and report its capabilities. The device capabilities are used for
matching sensing task to devices. We are exploring alternative
approaches to ensure user privacy, including cloaking and
measurement aggregation [9].

The Device Libraries interact with the hosting application in
two instances: () when a new request for sensing locations is
issued and (i7) when the application detects the sensing tasks
requirements are satisfied. This interaction requires modifying
the hosting application at the corresponding points in its source
code. The first is the during the querying of in-game locations,
the Request, and when the application detects the user context
matches a task requirements, the C'allback. In Sec. V-B we
show that these changes are generally small and localized.

E. Hosting Application

CSC has two main requirements of hosting mobile appli-
cations, the use of physical locations with bound incentives.
Within the classes of location-based applications, there are
those with flexible locations, including games such as Parallel
Kingdom [29], and fixed locations which involve existing
landmarks and points of interest, such as a photo hunting
game.

Depending on the flexibility of locations within each ap-
plication, CSC is able to offer different utility to sensing
campaigns. For applications with a large degree of location
flexibility, such as role-playing, adventure games or point-
capture games where users must collect items around them,

N

"~

(b) Map

(a) Augmented Reality

Fig. 4. The augmented reality and map screen of our GhostHunter game.

CSC can have more freedom to translate the application’s
original locations toward more preferred locations, and provide
greater value for associated sensing campaigns.

Unfortunately, those applications without flexibility in their
location, and that lack variable incentives for users are unable
to be used as CSC host applications.

Additionally, CSC hosting applications can offer different
levels of sensing services, depending on the level of control
offered by the application itself. For example, the two host
applications we evaluate in Section V enact different levels of
control over user movements. For instance, our GhostHunter
application incorporates an augmented reality element into
gameplay. In order to achieve an objective, the user must
point their device’s camera at a particular heading and zenith
in a particular location; whereas the geocaching application
only affects a user’s location with no control over device
orientation. Therefore, campaigns requiring the camera would
only be accessible to users of the GhostHunter application.

IV. IMPLEMENTATION

We developed a fully operational prototype for CSC, con-
sisting of the CSC Cloud Service and the CSC Device Runtime
system. We implemented the CSC Cloud Service in Python
(1,020 SLOC) as a webservice running within the Django !
framework, backed by a MySQL server. All functions are
accessed through A REST interface. Our prototype implemen-
tation executes requirement matching, location translation, task
dissemination, measurement recording and scheduling.

The CSC device runtime system is implemented as a library
for the Android 4.2 operating system consisting of 4,258
lines of Java code. The library consists of a background
service which handles registration of the device with CSC,
communication with the CSC cloud service, and executes
each sensing action. A list of currently implemented sensing
modules is shown in Table I.

A. Hosting Applications

We integrated CSC into two different hosting applications —

a homegrown augmented reality game (GhostHunter) and an
open-source geocaching game (c:geo?).

a) GhostHunter: GhostHunter is a proof-of-concept aug-

mented reality game for Android. In GhostHunter, a player

Thttp://www.djangoproject.com
Zhttp://cgeo.com

[Name | Description]

camera Takes Photographs

microphone | Records noise measurements
wifi-scan Records access points and RSSI
ping Performs a ping to host
traceroute Performs a traceroute to host
ndt Runs a Network Diagnostic Test

TABLE T
AVAILABLE SENSORS WITHIN SENSING REQUIREMENTS

chases ghosts and other monsters around their neighborhood
and “zaps” them by capturing their photo through an aug-
mented reality display. All targets have an associated reward
value. We chose this augmented-reality game model as it
supports the most control over a user’s device; in addition
to a user’s location and time, the exact position of a ghost
allows us to control the heading and orientation of the device
as well.

The game consists of two parts: a map screen and an
augmented reality display. To play, the user walks around
toward the location of “ghosts” which are overlaid on the
map screen. When sufficiently close, the game switches to an
augmented reality mode in which the player follows arrows
on the screen to place the ghost in their cross hairs. Once
the ghost is within their sights, the player is able to capture it.
GhostHunter is implemented in about 3,500 lines of Java code.
Screen shots of our GhostHunter app are shown in Figure 4.

b) Geo-caching: We used an open-sourced geo-caching
application named c:geo’ to illustrate the cost of integrating
CSC into an unfamiliar codebase. In geo-caching players place
caches, hidden containers holding small treasures, all over the
globe, and publish their geographic coordinates for others to
find. When one finds a cache, the tradition is to swap one
of the existing treasures for one of your own, thus creating a
connection with others in the geo-caching community.

Each cache exists as a physical object and a fixed location,
so, unlike GhostHunter, we cannot merely change the location
of the objectives, otherwise the player will find no caches. We
instead must use the given points to take measurements.

The incentive structure of c:geo geo-caching is slightly
different than GhostHunter since there are no in-game rewards.
The incentive is the enjoyment of finding the cache and
connecting with those previously there. Within the c:geo online
database are ratings and comments from previous finders. We
modify the ratings of the caches based on the proximity to
sensing tasks. While this alters the particular ratings of a cache
location, it does not fundamentally change the user experience.

V. EVALUATION

In this section, we present results from our evaluation of
CSC, including the potential of our approach for steering
user actions, the overhead of integrating and using our CSC
prototype and its potential benefits in three concrete studies *.

3http://cgeo.org
4A series of case studies representing a fourth evaluation measure were
conducted, but were omitted for space constraints

1.0 =)
0.8 7]
0.6 7]
w
o
O
0.4 7]
0.2 7_- == Variable Incentive
d =+ Fixed Incentive
0.0 , , - - - - -
0 100 200 300 400 500 600 700 800
Distance (m)

Fig. 5. Distance travelled by participants for each game item from their
determined baseline path. The majority of users on phase 3 travelled further.

A. Potential of Crowd Soft Control

Our first experiments aimed to characterize the flexibility of
users’ mobility patterns during game play (i.e., how far and
how long are users willing to travel for a game objective?).
Through this experiment we show (4) that in-game rewards can
motivate people outside of their baseline mobility paths and
that (i7) greater in-game rewards result in higher movement
distances.

We run the experiment over the course of four days in April
2013, engaging 22 undergraduate students using their personal
Android mobile device. We collected data through the use
of our instrumented GhostHunter application which recorded
and reported user-game interaction, our CSC mobile device
framework which reported task measurements, along with a
logging application which recorded a user’s mobility profile
through out the experiment. Participants were given a $20 gift
card for their successful participation in the experiment.

The experiment was split into three phases, a baseline, a
fixed-incentive and a variable-incentive phase, each lasting 24
hours.

Baseline Phase: The first phase of the experiment sets the
mobility baseline for each user for later comparison. A logging
application recorded each device’s GPS location at 5 minute
intervals. This collection of GPS traces constitute a user’s
baseline mobility profile.

Fixed Incentives: Users were instructed to play GhostHunter
for a total of 30 minutes during the day. The experiment
game took place entirely on the university’s campus, and game
objectives were bounded by its geography. Game locations
were chosen at random, with a total of 20 objectives on the
map at any given times. A new objective was created upon
completion. All game objectives were worth 100 points.
Variable Incentives In this last phase, we measure the user
response to different incentive values for game objectives.
Participants were asked to play for an additional 30 minutes
during that day. Point values of each objective was determined
by its distance to that particular user’s baseline path recorded
during Phase 1. The values ranged from 50 to 400 points
depending on the distance calculated.

c) Findings: We compute the traveled distance as the
shortest Euclidean Distance between the baseline mobility path
and the measurement point. Figure 5 plots these distances. As
the figure shows, users travelled an average of 264 meters

Distance Travelled for In-Game Rewards

£ N +
= 500¢ + +

Q + + *

2 400(+ + F

=

o 300 *

o

5

& 200} .,

(=) + +

QSO 100 150 200 250 300 350 400 450 500
Game Value

Fig. 6. Distance travelled by users in phase 3 plotted against the point value
offered within the game. Distance traveled was strongly correlated with game
points.

between their baseline paths and each measurement with
Fixed Incentives (phase 2) and an average of 392 meters,
48% increase, when varying the point value of the different
objectives.

Figure 6 plots the distance travelled from each user’s
baseline mobility path to each objective against the game value
of a point. As it is clear from the figure, users were willing to
travel the extra distance for the additional in-game rewards.

B. Cost of Integration

We measure the cost of integration based on the extent of
changes necessary to incorporate CSC in a hosting application.
We use the total number of SLOC added or modified as our
metric.

Each location-based application communicates with the
CSC device service through Android interprocess communi-
cation. At different times while executing (e.g., as the game
progresses), an application requests locations from the CSC
daemon using getCSCLocations ([location set]).
Where [location set] is a set of (latitude, longitude) pairs
of original application locations. A collection containing the
original location, the new CSC preferred location, and the
location priority.

When the user reaches the specified location, a callback
is fired to CSC through performCSCAction () to carry
out the predetermined action from the sensing task (e.g.,
taking a sound sample). A callback mechanism lets us reuse
the location detection capabilities existent in location-based
applications and is more efficient than an alternative CSC
driven pull model.

To integrate CSC one must include calls and associated
handlers for both tasks, and add logic to incorporate sensing
task priorities (if applicable). This can be done with minimal
changes. Table II reports the number of lines needed to
integrate CSC in both GhostHunter Game and the open
source c:geo geo-caching application. The maximum number
of SLOC added/modified was 25 (22 for c:geo). While the
specific numbers depend on the particular hosting application,
we believe the integration task to have relatively low-overhead
given its minimal interface.

Application | Function Num. of lines
GhostHunter | Location Request | 2
GhostHunter | Device Action 10
GhostHunter | Other 13

c:geo Location Request | 7

c:geo Device Action 15

c:geo Other 0

TABLE IT

COST TO INTEGRATE SOFT CONTROL INTO OUR EXAMPLE GAME IN TERMS
OF NUMBER OF ADDITIONAL LINES OF CODE USED. CSC WAS
INTEGRATED WITH LESS THAN 25 LINES OF ADDITIONAL CODE.

1.0

=
'-I

0.8 1

0.6 1
w
fa)
O

0.4 1

0.2 = w/o CSC]|

Y = w/CSC
0.0 at? L T
0 100 200 300 400 500

Latency (ms)

Fig. 7. Additional application latency induced with CSC. The integration
of CSC results on a median latency difference of 61 ms, imperceptible to
users [4].

C. Micro Benchmarks

We estimate the impact of using the CSC library to the
hosting applications in terms of additional processing delay
and network usage. These tests were performed on a Samsung
Galaxy S3 phone running Android 4.2.

1) Induced Application Latency: One of the main concerns
with CSC integration is noticeable performance differences
between original applications and those integrated with CSC.
We estimate the perceived impact of CSC integration on an
application by measuring the additional latency in the applica-
tion’s execution during CSC activities. Performance penalties
manifest themselves as delayed responsiveness within the
application such as the application’s response time to user
input or the time between game screens.

We measured this application responsiveness within
GhostHunter recording the time taken to capture a Ghost in the
game both with and without CSC integration. When the player
“captures” the ghost, the capture is recorded as part of the
game and the game returns the user to the Map screen. When
CSC is involved, at the time of the ghost capture a callback
to the CSC runtime library results in a sensing measurement
sampling.

The time between when a user presses the capture button
and when the new screen loads is the event latency in
GhostHunter. Any additional time incurred by CSC activities is
the performance impact of CSC integration. We measured this
additional latency from when a user presses the capture button,
to when the map screen completed loading. We ran 100 trials
within GhostHunter with and without CSC, and measured the
response time. Figure 7 plots the results of this experiment.
As the figure shows, CSC added delays are minimal and
imperceptible to users [4]. On average, the additional latency

[Function [Mean [Min [Max |

Task Request 3.27 1.15 | 5.73

Measurement - camera 492.8 | 258 | 680

Measurement - microphone | 4.56 1.8 7.5

Measurement - wifi 2.2 0.89 | 4.34
TABLE 1IIT

NETWORK USAGE FOR CSC DEVICE RUNTIME FUNCTIONS PER
INVOCATION (IN KB).

imposed is only 66 ms, and a 90th percentile additional latency
of only 72 ms.

2) Network Usage: Last, we measured CSC overhead with
regard to additional network usage incurred by the framework.
We used the network profiler included in the Android 4.2
SDK to capture the amount of data transferred to our servers.
We distinguish between measurement and non-measurement
traffic data since the amount of data transferred depends on
the type of measurement desired (e.g. a photo contains more
information that a wireless network measurement). Table III
shows that while certain measurements such as photos can
take on average of nearly 500 kB, prolonged use of CSC
could potentially add significant network traffic; however,
since measurement data is not time sensitive, it would be trivial
to require that all measurement traffic be transferred over Wifi
interfaces.

VI. DISCUSSION

By coupling crowdsensing services with third-party mobile
applications, CSC diverges from traditional crowdsensing ap-
plications and frameworks. In particular, we discuss how CSC
recruits participants for measurements and how it maintains
the privacy and security of its users.

In terms of user recruitment, CSC shifts the target up from
individual users towards mobile application developers. We be-
lieve this may be a preferable approach to more common pure
crowdsourcing models that require each individual participant
to be “enlisted”. With CSC, a single developer has the potential
to reach a large number of users depending on the popularity
of her application. In addition, we see a possibility for models
like CSC as a way for developers to be compensated for their
mobile applications as an alternative for ad-supported models.

As is the case with all location based systems, including
mobile micro-task markets, existing mobile crowdsourcing
systems and location based games/applications, privacy re-
mains an open concern for users. By design, CSC retains
no identifiable information from the users. All information is
stored with a unique ID that is randomly assigned to each
client. There is still the opportunity for identification to be
inferred from geographic context [37]. However, CSC adds
no additional loss of privacy beyond that of existing host
application.

Similarly, there is a potential risk of allowing researchers
to “lure” users toward potentially dangerous areas. We argue
that CSC does not add to the risks already present in any
location-based application. As augmented reality gamers can
be trusted to exercise their best judgement during play, users
of extended location-based applications should be trusted to

apply that same judgement to the suggestions made through
CSC.

VII. RELATED WORK

This paper builds upon the earlier work of Rula et al. [34],
and is inspired by much previous work on mobile sensing
systems [18], mobility analysis and incentives in the context
of crowdsensing. To the best of our knowledge, CSC is the
first approach to mate existing applications and their incentives
with crowdsensing tasks.

Crowdsensing platforms. Several mobile sensing platforms
have been proposed and implemented in recent years (e.g. [9],
[10], [22], [30]). Anonysense [9] primarily focuses on mobile
user privacy. It uses a pull based method of distributing sensing
tasks which is shared by CSC. PRISM [10], Bubble Sens-
ing [22], and Medusa [30], three other related frameworks,
distribute sensing tasks to participating users. PRISM allows
the execution of remote code on participating devices, Bubble
Sensing introduces an abstraction to tie physical locations
to tasks, and Medusa generates crowdsensing work flows
across multiple devices. Like CSC, these platforms aggregate
sensing tasks and disseminate them to mobile users based on
contextual information.

Mobility patterns and sensing. Previous studies have shown
the benefits controlled (or predictable) mobility can have on
sensing coverage and routing efficiency [21], [2], [3], [6], [28].
Reddy et al. put forward a closely related idea leveraging
participant’s previous location traces to guide scheduling
in participatory sensing campaigns [33]. While predictive
methods can help optimize existing mobility patterns, they are
unable to direct measurements to currently uncovered areas.
These platforms do not offer any form of “control” over
participants’ actions relying on either opportunistic interac-
tions or participatory volunteer response for coverage. Our
work attempts to gain partial control over participants actions
through the reuse of applications built-in incentives.
Incentive Design. Recent work has started to explore the
use of incentive mechanisms in crowd sensing applications
to address recruitment and data collection issues found in
early sensing platforms [35]. Sik et al. [20] proposes a market
mechanism for pricing participatory sensing data. Yang et
al. [43] devises both a platform-centric and user-centric model
of incentive mechanisms for crowdsourcing to smartphones.
Reddy et al. [32] investigated the effects of different micro-
payment incentive structures on participatory sensing per-
formance. While our work avoids the difficult challenge of
modeling human response to incentives, and instead relies on
incentives already known to work in existing applications, it
could benefit from better incentive mechanisms.

Games with a purpose. Similar to Games with a Pur-
pose [41], CSC attempts to utilize indirect incentives to
help motivate users to complete system-level goals. Several
applications have used the idea of games as platforms for
crowdsourcing activities by developing games which specif-
ically exploit human computation during game play [40], [1],

[25]. Unlike this previous work, CSC exploits mobile game
play from applications not designed for crowdsourcing.

VIII. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
helpful and insightful comments. This work was supported in
part by the National Science Foundation through Award CNS
1218287 and 1211375.

IX. CONCLUSION

We have presented Crowd Soft Control and demonstrated
the benefits of this approach in crowdsensing. By pairing the
sensing requirements of crowdsensing services with location-
based applications, CSC allows researchers to leverage an
application’s incentives (e.g. game objectives) to control the
movement of participating users, increasing the effectiveness
and efficiency of sensing campaigns. We implemented and
evaluated CSC in the context of two mobile applications. Our
evaluation shows the low cost of integrating CSC into existing
applications and, through micro-benchmarks, the minimal
overhead it imposes our run-time system on the mobile device
and hosting application.

REFERENCES

[11 A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and V. S.
Pande. Foldinghome: Lessons from eight years of volunteer distributed
computing. 2009.

[2] D. R. Bild, Y. Liu, R. P. Dick, Z. M. Mao, and D. S. Wallach. Using
predictable mobility patterns to support scalable and secure MANETS
of handheld devices. In Proc. of MobiArch, 2011.

[3] J. Burrell, T. Brooke, and R. Beckwith. Vineyard computing: Sensor
networks in agricultural production. IEEE Pervasive Computing, 3(1),
2004.

[4] S. K. Card, A. Newell, and T. P. Moran. The Psychology of Human-
Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA,
1983.

[5] U. center for Embedded Networked Systems. Participatory sensing / ur-
ban sensing projects. http://urban.cens.ucla.edu/projects/garbagewatch/,
January 2011.

[6] A. Chakrabarti, A. Sabharwal, and B. Aazhang. Using predictable
observer mobility for power efficient design of sensor networks. In
Proc. of IPSN, 2003.

[71 Y. Chon, N. D. Lane, Y. Kim, F. Zhao, and H. Cha. Understanding
the coverage and scalability of place-centric crowdsensing. In Proc. of
UbiComp, 2013.

[8] Y. Chon, N. D. Lane, F. Li, J. Cha, and F. Zhao. Automatically char-
acterizing places with opportunistic crowdsensing using smartphones.
September 2012.

[9] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and

N. Triandopoulos. Anonysense: privacy-aware people-centric sensing.

In Proc. of MobiSys, 2008.

T. Das, P. Mohan, V. N. Padanabhan, R. Ramjee, and A. Sharma.

PRISM: platform for remote sensing using smartphones. In Proc. of

MobiSys, 2010.

European Commission. The environmental noise directive. Technical

Report 2002/49/EC, European Commission, 2002. Adopted June 25,

2002.

Foursquare. foursquare. http://www.foursquare.com.

R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. F. Abdelzaher.

Greengps: a participatory sensing fuel-efficient maps application. In

Proc. of MobiSys, 2010.

R. K. Ganti, F. Ye, and H. Lei. Mobile crowdsensing: Current state

and future challenges. Communications Magazine, IEEE, 49(11):32-39,

2011.

H. Gonzalez-Banos. A randomized art-gallery algorithm for sensor

placement. In In Proc. SCG, 2001.

[10]

[11]

[12]
[13]

[14]

[15]

[16]
[17]
[18]
[19]
[20]
(21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]
(30]
[31]

(32]

[33]
[34]

[35]

[36]

[37]
(38]

[39]

[40]

[41]

[42]

[43]

C. Guestrin, A. Krause, and A. P. Singh. Near-optimal sensor placements
in gaussian processes. In In Proc. ICML, 2005.

H. Hodson. Why google’s ingress game is a data gold mine. New
Scientist, 2893, Dec 2012.

A. Krause, E. Horvitz, A. Kansal, and F. Zhao. Toward community
sensing. In Proc. of IPSN, 2008.

R. R. Labs. Red robot —
http://www.redrobot.com.

J.-S. Lee and B. Hoh. Sell your experiences: a market mechanism based
incentive for participatory sensing. In Proc. of PerCom, 2010.

B. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley. Mobility improves
coverage of sensor networks. In Proc. of MobiHoc, 2005.

H.Lu, N. D. Lane, S. B. Eisenman, and A. T. Campbell. Bubble-sensing:
Binding sensing tasks to the physical world. Pervasive Mob. Comput.,
6(1):58-71, Feb. 2010.

Lui. The demographics of ingress. http://simulacrum.cc/2013/01/23/the-
demographics-of-ingress.

N. Maisonneuve, M. Stevens, M. Niessen, and L. Steels. Noisetube:
Measuring and mapping noise pollution with mobile phones. Informa-
tion Technologies in Environmental Engineering, pages 215-228, 2009.
S. Matyas, C. Matyas, C. Schlieder, P. Kiefer, H. Mitarai, and
M. Kamata. Designing location-based mobile games with a purpose:
collecting geospatial data with CityExplorer. In Proc. ACE, 2008.
mobiThinking. Global mobile statistics 2012. http://mobithinking.com/
mobile-marketing-tools/latest-mobile-stats/a#subscribers, May 2013.
NianticLabs@Google. Ingress. http://www.ingress.com.

U. Park and J. Heidemann. Data muling with mobile phones for
sensornets. In Proc. of SenSys, 2011.

PerBlue. Parallel kingdom. http://www.parallelkingdom.com.

M.-R. Ra, B. Liu, T. la Porta, and R. Govindan. Medusa: A programming
framework for crowd-sensing applications. In Proc. of MobiSys, 2012.
N. Ramakrishnan, C. Bailey-Kellogg, S. Tadepallit, and V. N. Pandey.
Gaussian processes for active data mining of spatial aggregates. In In
Proc. SIAM, 2005.

S. Reddy, D. Estrin, M. Hansen, and M. Srivastava. Examining
micro-payments for participatory sensing data collections. In Proc. of
UbiComp, 2010.

S. Reddy, D. Estrin, and M. Srivastava. Recruitment Framework for
Participatory Sensing Data Collections. In Proc. of PerCom, 2010.

J. P. Rula and F. E. Bustamante. Crowd (soft) control: moving beyond
the opportunistic. In Proc. of HotMobile, 2012.

J. P. Rula, V. Navda, F. E. Bustamante, R. Bhagwan, and S. Guha.
No “one-size fits all”: Towards a principled approach for incentives in
mobile crowdsourcing. In Proc. of HotMobile, 2014.

S. Shah, F. Bao, C.-T. Lu, and L.-R. Chen. Crowdsafe: Crowd sourcing
of crime incidents and safe routing on mobile devices. In Proc. of ACM
SIGSPATIAL GIS, November 2011.

K. Shilton. Four billion little brothers?: Privacy, mobile phones, and
ubiquitous data collection. Commun. ACM, 52, November 2009.

C. Song, Z. Qu, N. Blumm, and A.-L. Barabdsi. Limits of Predictability
in Human Mobility. Science, 327(5968):1018-1021, Feb. 2010.

L. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A characterization
of ten hidden-surface algorithms. ACM Computing Surveys (CSUR),
6(1):1-55, 1974.

K. Tuite, N. Snavely, D.-Y. Hsiao, N. Tabing, and Z. Popovi¢. PhotoCity:
training experts at large-scale image acquisition through a competitive
game. In Proc. CHI, May 2011.

L. von Ahn and L. Dabbish. Labeling images with a computer game.
In Proc. CHI, 2004.

Y. Xiao, P. Simoens, P. Pillai, K. Ha, and M. Satyanarayanan.
Lowevering the barriers to large-scale mobile crowdsensing. In Proc. of
HotMobile, 2013.

D. Yang, G. Xue, X. Fang, and J. Tang. Crowdsourcing to smartphones:
incentive mechanism design for mobile phone sensing. In Proc. of
MobiCom, 2012.

location is everywhere.

