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Abstract

We consider the problem of choosing who to “be-
friend” among a collection of known peers in dis-
tributed P2P systems. In particular, our work explores
a number of P2P protocols that, by considering peers’
lifespan distribution a key attribute, can yield systems
with performance characteristics more resilient to the
natural instability of their environments.

This article presents results from our initial efforts,
focusing on currently deployed decentralized P2P sys-
tems. We measure the observed lifespan of more than
500,000 peers in a popular P2P system for over a week
and propose a functional form that fits the distribution
well. We consider a number of P2P protocols based
on this distribution, and use a trace-driven simula-
tor to compare them against alternative protocols for
decentralized and unstructured or loosely-structured
P2P systems. We find that simple lifespan-based pro-
tocols can reduce the ratio of connection breakdowns
and their associated costs by over 42%.

Keywords: Peer-to-Peer, Lifespan, Pareto Distri-
bution, Protocols, Empirical Study.

1 Introduction

Peer-to-peer computing has been defined as the
sharing of computer resources and services by direct
exchange between the participating nodes. Since Nap-
ster’s [17] introduction in 1999, the area has received
increasing attention from the research community and
the general public, as the model’s many advantages
have being recognized.

In its purest form, the P2P model has no concept of
a server, but rather considers all participants as equals,
regardless of resource capacity, connectivity or “com-
mitment” to the common good. While this assumption
of equality enables very simple protocols, it could also
translate into the loss of some of the model’s most ap-
pealing attributes [1].

Part of the problem stems from the clash between
this equality assumption and the degree of heterogene-
ity and transiency found in recent studies of current
P2P systems. Far from being equal, peers’ populations
have been shown to exhibit significant variations in at-
tributes such as storage, bandwidth, latency and their
degree of sharing. Peers’ commitment to the system,
in particular, has been found to differ by more than
four orders of magnitude [24].

Peers in P2P systems typically define an overlay
network topology by keeping a number of connec-
tions to other peers, their “friends,” and implementing
a maintenance protocol that continuously repairs the
overlay as new members join and others leave the sys-
tem. The implication of the degree of peer transiency
on the overall system’s performance is directly related
to the degree of peers’ investment in their friends. At
the very least, the amount of maintenance-related mes-
sages processed by any node would be directly related
to the degree of stability of the node’s neighboring set.
Beyond this, and in the context of content distribution
P2P systems, the degree of replication, the effective-
ness of caches, and the spread and satisfaction level of
queries will all be affected by how dynamic the peers’
population ultimately is.

We consider the problem of selecting who to “be-
friend,” among a collection of known peers in dis-
tributed P2P systems. Our work explores new proto-



cols that, by considering peers’ lifespan distribution
a key attribute, can yield systems with performance
characteristics more resilient to the natural instabil-
ity of their environments. This article presents results
from our initial efforts, focusing on currently-deployed
unstructured and loosely structured P2P systems.

We have measured the observed lifespan of peers in
a widely-deployed P2P system and identified a func-
tional form that fits the distribution well. We have de-
signed a number of P2P protocols based on this dis-
tribution and used a trace-driven simulator to com-
pare them against alternative protocols for decentral-
ized and unstructured or loosely-structured P2P sys-
tems. We found that P2P protocols based on simple
heuristics that prioritize long lived peers when select-
ing a peer’s new “friends” can significantly reduce (up
to 42%) the ratio of connection breakdowns and their
associated costs.

The remainder of this article is structured as fol-
lows. In Section 2 we present some background and
review related work. We discuss the results of our
study on peers’ lifespans in Section 3. Sections 4 and
5 present a number of examples of how lifespan could
be taken into consideration in P2P protocols and il-
lustrate its benefits using a trace-driven simulation of
decentralized unstructured and loosely-structured P2P
systems. We summarize our results and discuss future
work in Section 6.

2 Background

P2P computing has experienced an explosive
growth in the last few years and a number of widely-
deployed and research-oriented protocols have be-
come available. Although the goal of most P2P sys-
tems is to provide general distributed resource sharing
among the participating peers [26, 9, 10, 12], one of
the most popular applications is content distribution.

In general, a set of participant nodes in a P2P sys-
tem carries the system traffic consisting of functional-
ity as well as control-related messages. P2P systems,
or more precisely the protocols they implement, can
be classified based on the participating nodes’ reliance
on centralized servers and the set’s degree of struc-
ture [15].

In protocols adopting a centralized architecture, e.g.
Napster, a central server is approached first to ob-

tain meta-information, such as the identity of the peer
in which some information is stored, and all subse-
quent communication is done directly between the
peers themselves. In order to improve query perfor-
mance and/or reduce control traffic, a number of pro-
tocols with more structured but decentralized architec-
tures have been proposed. In loosely structured pro-
tocols the location of objects could be more or less
controlled [7], or some degree of hierarchy may be im-
posed among peers [13, 14]. Within highly-structured
protocols, both the network topology and the place-
ment of resources are precisely determined [19, 22, 29,
30]. Decentralized and unstructured protocols such as
early versions of Gnutella [8] neither rely on central-
ized directories nor enforce any precise control over
the network topology or object placement, resulting in
systems that are highly resilient to the transient nature
of P2P populations.

In most unstructured and loosely-structured P2P
protocols nodes join the network by first contacting
a set of peers already in the system (whose contact
information may have been obtained through a well-
known web site). Connected peers interact with each
other exchanging various types of messages, most of
which are broadcasted or back-propagated. Broad-
casted messages are sent on to all other peers to which
the sender has open connections. Back-propagated
messages are forwarded on a specific connection on
the reverse of the path taken by an associated broad-
casted message. A user wishing to find a given re-
source issues a query to its own peer. Queries are for-
warded among peers for as long as they are alive, de-
termined by a Time-To-Live field associated with the
query itself and decremented after each forward. Be-
sides queries and replies, other types of messages in-
clude object transfer and group membership messages
such asping, pong and bye. Pings are used to dis-
cover hosts on the network. Ping messages are replied
with pongscontaining information on the responding
peer and all others this peer knows about. Informa-
tion on neighbor nodes can be provided either by creat-
ing pongs on their behalf or by forwarding the ping to
them and back-propagating the replies. Pong messages
include the contact point of a peer as well as informa-
tion on what resources it makes available.Byesare
optional messages used to report the closing of con-
nections.



2.1 Related Work

There have been a number of studies reporting on
experimental data collected from currently deployed
P2P systems [28, 20, 24, 6, 16, 25, 4]. Ripenau et
al. [20] identify a mismatch between the topologies
of the Gnutella application-level network and that of
the underlying Internet that leads to ineffective use
of the physical networking infrastructure. More rele-
vant to our work, the authors found that, by November
2000, only 36% of the total traffic (in bytes) was user-
generated (query), while 55% of the remaining traf-
fic was used to maintain group membership. While
these numbers have significantly improved with the
last modifications to the protocol, they are still a good
indication of some of the potential effects of instabil-
ity.

A few of these studies have looked at peers’ par-
ticipation in P2P systems. Saroiu et al. [24] exam-
ine node uptime and a range of other attributes such
as reported bandwidth, latency, and degree of shar-
ing, and found large degrees of heterogeneity among
peers in the systems, with variations of three and up
to five orders of magnitudes in the characteristics sam-
pled. For their lifetime study, they recorded the up-
time of 17,125 peers during 60 hours. Chu et al. [6]
present results from a considerably longer experiment
(over six weeks) on a smaller number of peers (5,000
IP:port pairs), focusing on node availability and ob-
ject transfer. Their experiments results show seri-
ous fluctuations in the number of available nodes, a
highly transient population and significant time-of-day
effects. The authors also found a high level of local-
ity in the stored and transferred objects, suggesting
that the use of caches may significantly reduce net-
work traffic and improve the user experience. Sen and
Wang [25] analyze P2P traffic collected passively at
multiple border routers across a large ISP network and
report similar high-level system dynamics. The node
availability measurements in both Saroiu et al. [24]
and Chu et al. [6] were gathered by actively probing
previously collected TCP/IP addresses of peers. Due
to their methodology, their probes can only determine
if a node is or is not accepting TCP connections in the
requested port without distinguishing what application
is connected to it. In our experiments we collected
around 1 million lifespan entries for over a half-million

peers; to avoid potential errors in our measurements,
we tried to set application-level connections (checking
for the specific packet header in Gnutella messages).
In their study on availability [4], Bhagwan et al. dis-
cuss the potential effects of aliasing on modeling host
availability.1 The authors rightly point out that, in try-
ing to accurately capture the availability characteristics
of hosts, IP address aliasing can result in great overes-
timation of the number of hosts in the systems and the
underestimation of their availability. By comparison
with the authors’ study, our work aims at character-
izing the lifespan distribution of individual sessions,
during which a peer’s IP:port tuple will not change.

Our research is partially motivated by the semi-
nal work of Harchol-Balter and Downey [11] on pro-
cess lifetime distribution and its implications on load-
balancing techniques. The authors measured the distri-
bution of Unix processes and propose a UBNE (used-
better-than-new-in-expectation) distribution that fits it
well. Based on their finding, Harchol-Balter and
Downey present a new policy for preemptive process
migration in clusters of workstations.

We consider the problem of selecting who to “be-
friend” so as to yield systems with performance char-
acteristics more resilient to the dynamic nature of their
environment. Bernstein et al. [3] propose the use of
machine learning for the selection of peers as sources
from which to download. Banerjee et al. [2] in-
troduce a scalable unicast-based technique to locate
nearby peers. While efficiently choosing nearest peers
is an important problem for many applications, such
as overlay multicast and content distribution networks,
selecting among similarly near peers using our pro-
posed lifespan-based heuristics could significantly im-
prove system stability, further reducing network load.

3 Peer Lifespan Distribution

Because of the potential implications of high de-
grees of transiency in P2P populations, we performed
an independent study of peers’ lifespans in a current
and widely deployed P2P network with the intention
of developing a model that accurately describes its dis-
tribution. In the remainder of this section we describe
our methodology and discuss our findings.

1Aliasing effects could be due, for example, to the use of
DHCP and NATs, as well as the sharing of a host by multiple users.



3.1 Collecting Observed Peers’ Lifespans

To actively measure the lifespan of peers in
Gnutella, we modified an open source Gnutella client2

to both keep track of every peer found and periodically
check its availability. Our monitoring peer maintains
a hash table, initially empty, of peers it has seen so
far. Each entry in the hash table includes fields for (1)
IP:port of peer, (2) node type (leaf- or ultra-peer), (3)
time of birth (TOB), (4) time when found (TWF), and
(5) time of death (TOD).

On each iteration the monitoring peer updates the
existing entries and inserts new ones as it finds new
peers. Since it only knows with certainty the TOB of
previously known and reborn peers, first time found
(live) peers are included in the table with only the TWF
field set to the current time. A peer is considered dead
when a connection attempt fails (i.e. a third try times
out3) or an unexpected response is received. Table 1
summarized the strategy used for updating peer lifes-
pan information.

Last Scan Current Scan Action
Unknown Dead None
Unknown Alive TWF =T
Dead Dead None
Dead Alive TOB =T
Alive Dead TOD =T
Alive Alive None

Table 1. Strategy used for updating the peer
table in each iteration ( T: Current Time). As
described in the fourth case in the table (in
italics), if a peer was found dead in the pre-
vious scan and alive in the current one, its
Time Of Birth (TOB) is set to the current time.
A peer is considered dead when a connec-
tion attempt fails or an unexpected response
is received.

A single monitoring peer scanning the whole table
will clearly be too slow, resulting in too coarse a granu-
larity for our lifespan measurements. To avoid this we
evenly distribute the peer table (based on the hash val-
ues of peers) over 20 monitoring peers running across
17 hosts. This approach allows us to achieve a granu-

2Mutella: http://mutella.sourceforge.net
3We use the default timeout value of 10 seconds.

larity of 1,300 seconds (about 21 minutes), when scan-
ning over 30k to 40k entries per client.

3.2 Peer Lifespan Distribution

We measured the lifespans of more than 500,000
peers for over 7 consecutive days between March 1st
and 8th, 2003. To account for the fact that ses-
sions may be active (or inactive) for times longer than
our sampling duration, we resort to thecreate-based
method[21, 24]: we divide the captured trace into two
halves and report lifespans only for sessions started in
the first half. If a session ended during either the first
or second half, we can obtain its lifespan by subtract-
ing the starting time from the ending time; if a session
was still active at the very end of the trace, we get a
lower bound for its lifespan, which is larger than half
the trace length, i.e. 3.5 days. This method provides
accurate information about the distribution of lifes-
pans for sessions that are shorter than half the trace, as
well as percentage of sessions that are even longer. In
addition, due to the granularity of our measurement,
we could only give lifespan distribution for sessions
longer than 1,300 seconds.

Figure 1 presents the Reverse Cumulative Distri-
bution Function (RCDF) of peers’ observed lifespans
shorter than 3.5 days (and longer than 1,300 seconds).
Lifespan distribution is presented in both normal axes
(a) and log-log scale (b). The distribution in the log-
log scale plot can be approximated by a straight line,
indicating that the peer lifespan distribution can be
modeled by a Pareto distribution of the formλT k

(k < 0). More precisely, the probability of a session
exceedingT seconds isλT k. TheR2 value higher than
0.99 verifies the very high goodness of fit of the model.
In contrast, the exponential curve fails to model the ob-
served data with aR2 value of only 0.80.

The Pareto distribution belongs to the UBNE class
of distributions. In our context, this means that the ex-
pected remaining lifetime of a peer is directly propor-
tional to its current age: the older a peer is, the longer
we can expect it to remain in the system. In the re-
mainder of this article we introduce a number of P2P
protocols that take advantage of this observation. This
set of protocols is not meant to be an exhaustive one,
but is only used to illustrate the potential advantages
of the proposed approach.
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Figure 1. Distribution of lifetimes in a current P2P system (Gnutella) over a period of 7 days. The
two additional lines in subfigure (a) show two attempts to fit a curve to these data: one a Pareto
distribution and the other one an exponential curve. Subfigure (b) shows the same distribution on a
log-log scale; the straight line in the log-log space indicates that the distribution can be modeled by
λT k, where the constant k is less than zero and proportional to the slope of the line.

4 Peer Lifespan and P2P Protocols

In most P2P protocols, there are at least two in-
stances where peers need to choose among “acquain-
tances”: (1) when deciding who to befriend and (2)
when needing to respond to a third-party’s request for
references. In Gnutella-like protocols, the first group
would be contacted for connection requests and the
second one would be included inpongreplies toping
messages.

Peers normally keep a number of other peers as
close friends by accepting an upper-bounded num-
ber of incoming connections and trying to maintain
a lower-bounded number of outgoing ones. To cope
with the dynamic changes in P2P user population,
most systems implement some kind of maintenance
protocol that continuously repairs the overlay as nodes
join and leave the network. Nodes joining the network
use a number of control messages to let others know
of their arrival. The departure of a node is noticed by
its neighbors through periodic monitoring.

It is clear that the amount of control messages pro-
cessed by any node would be in direct relation to the
degree of stability of their neighboring set. Beyond
this, the implications of peers’ transiency on the over-
all system’s performance would be directly related to
the degree of investment peers place on their friends.

In the context of content distribution networks, the de-
gree of replication, the effectiveness of caches, and the
spread and hit ratio of queries would all be affected by
how dynamic the peers’ population ends up being.

It is surprisingly, then, to find that peers in most P2P
protocols are hardly selective when choosing friends;
consistent with the pure P2P model assumption on
peers, the most widely-used strategy to select whom
to befriend and/or choose which acquaintances to rec-
ommend is just random.

The basic idea behind the proposed protocols is to
dynamically increase the system’s degree of depen-
dency on a node as the node’s commitment to the com-
munity becomes clear. One way of achieving this is
to give preference to peers with longer expected lives.
Given the UBNE nature of peers’ observed lifespan
distribution (Section 3), a fair estimate for a peer’s re-
maining lifetime can be derived from its current age.4

The rest of this section describes three lifespan-
based protocols. Table 2 highlights their main aspects.

4This approach could also be seen as anincentivebased sys-
tem, where long standing members of the peer population have a
higher degree of connectivity than new-comers [24].



4.1 Lifespan-Based Friend Selection

A very simple protocol using this heuristic,LSPAN-
1, takes peers’ observed lifespans into consideration
only when deciding with whom to open a connection.
Peers piggy-back their own birth time in their ping
messages and propagate other peers’ birth times with
their replies. When a peer needs to open a new con-
nection, after the departure of a friend for example, it
simply selects the oldest known peer as its new partner.

Notice that the selection process incorporates some
degree of randomness. While a peer chooses the old-
est peer(s) from among those it knows of, this group
is made from the random set of recommendations for-
warded by other peers in the network.5

4.2 Lifespan-Based Friend Selection and Recom-
mendation

A more selective scheme,LSPAN-2, uses lifespan in
both opportunities: when selecting who to connect to
and when generating a response to a third-party’s re-
quest for references. From the perspective of the peer
trying to open a new connection, this insures that the
set of potential friends is made of long-lived peers.

The two protocols introduced so far would blindly
favor older peers and will naturally result in an in-
crease in the number of connection attempts made to
them. Since the actual number of incoming connec-
tions that a peer can accept is typically bounded by its
maximum number of incoming connections, our last
protocol considers the estimated number of available
incoming connections of a peer when selecting who to
connect to.

4.3 Taking Available Connection into Considera-
tion

LSPAN-3uses a weighted credit selection scheme
that incorporates both criteria: the peer’s current age
and the estimated number of available incoming con-
nections. The estimated number of available incom-
ing connections is the difference between the optimal
and current number. The optimal number of incoming
connections is upper-bounded, and its value at a given

5Recommendations are obtained through the ping/pong mes-
sage exchange already described.

point in time lies between a half and three-fourths of
the maximum number of incoming connections, de-
pending on the peer’s age (the older it is, the larger the
optimal incoming connection number).

In deployed P2P systems we expect to find a pos-
itive correlation between the lifespan of a peer and
its maximum number of connections: peers behind a
modem can only support very limited connections to
others, and tend to remain online for very short times,
while peers using T1/T3 connections will have a larger
maximum of connections and often stay active for sev-
eral days [24]. Correspondingly, the number of maxi-
mum connections allowed by a given peer in our proto-
cols is related to the peer’s current lifespan. For our ex-
periments this number ranged between 5 and 50, with
an average value of 20.6

Protocol Connect? Recommend?
LSPAN-1 Oldest Random
LSPAN-2 Oldest Oldest
LSPAN-3 Oldest & more

avail. connec-
tions

Random

Table 2. Lifespan-based protocols and the
different strategies used to select which ac-
quaintances should a peer “befriend” and
which ones should it recommend.

The following section presents evaluation results of
the three protocols and compares them with two alter-
native ones that do not rely on lifespan information.

5 Evaluation

To explore the role of peers’ lifespan distribution
in P2P protocols, we have implemented a trace-driven
simulator for P2P systems. Using a subset of the col-
lected trace-data we evaluate the proposed lifespan-
based protocols and compare them with two others that

6For completeness, we evaluated the performance of our pro-
tocols following the node capacity distribution model suggested
by Chawathe et al. [5], where each node belongs to one of five
capacity levels and has a maximum connection number directly
proportional to its level. Nodes’ capacities are assigned arbitrar-
ily and have no correlation with the nodes’ lifespans. The results,
available upon request, are comparable to those included in the
article.



represent decentralized unstructured and loosely struc-
tured P2P systems.

The remainder of this section describes our experi-
mental setup and the different strategies evaluated. We
then present results showing that P2P systems more
resilient to the transient nature of their environments
are possible with simple heuristics that prioritize long
lived peers when selecting new “friends.”

5.1 Experimental Setup

Our trace-driven, event-based simulator for P2P
systems consists of about 3,500 lines of commented
C++ code, implementing all membership management
related messages. We are currently extending it to
include different protocols for object searching and
replication.

We ran our simulation (on a cluster of Linux PCs)
using one of the 20 traces collected,7 with a total sim-
ulation period of 510,000 seconds (or about six days),
capturing the lifespan of 36,577 peers. The simula-
tion starts “cold,” i.e. without any peer. The number
of peers in the system increases during the first day
and stabilizes for the remaining time, varying between
700 and 1,000 at any given point. The results reported
in this section exclude this warm-up period (∼80,000
sec.).

5.1.1 Strategies

We evaluate three different protocols based on lifes-
pan distribution and compare them with two decentral-
ized protocols based on currently used systems. The
lifespan-based protocols were introduced in Section 4;
the remainder of this subsection describes the two al-
ternative protocols.

The alternative protocols used for comparison are
closely based on Gnutella- and KaZaa-like protocols:
Unstructured Decentralized Protocol (UDP)is based
on an improved version of Gnutella v0.4 [8] andHy-
brid Decentralized Protocol (HDP)is modeled after
hybrid protocols that rely on ultra- or super-peers [27]
such as KaZaa [13] and Gnutella v0.6 [14]. We heavily
rely on the specifications and available RFCs. When
the specifications are vague or unavailable, we resort
to our understanding of (open-source) clients currently
in use and other publically available documents.

7Simulations using the remainder traces yield similar results.

Both UDP and HDP utilize separate pools for
cached pongs, one pool per connection. Upon receiv-
ing a ping message, the protocolsrandomlychoose
a specified number of pong entries from their caches
(currently 10) and respond to the request.

HDP distinguishes between leaf-peers and ultra-
peers: ultra-peers can connect to any other peer (ul-
tra or leaf), while leaf peers can only connect to ultra-
peers. The scheme basically creates a two-level hier-
archy among participating nodes, where more power-
ful, faster ultra-peers take over much of the load from
slower ones. For our experiments we mark each peer
as either leaf- or ultra-peer as indicated by our trace
information.

5.2 Comparison

A good indicator of the effect of a protocol on sys-
tem stability is the ratio of connection breakdowns
to the number of effective connections. Figures 2
shows this ratio for every one of the protocols dis-
cussed, while the associated table presents some ba-
sic statistics including the average and standard de-
viation. As can be observed, all lifespan-based pro-
tocols yield much lower ratios of connection break-
downs than random-based protocols (UDP and HDP),
a natural result of the UBNE property of peers’ lifes-
pan distribution and the former protocols’ preference
for older peers. The most selective lifespan-based pro-
tocol, LSPAN-2, naturally gives the lowest ratio of
connection breakdowns over time, with reductions of
42-43% by comparison with that of UDP and HDP.
LSPAN-1 and LSPAN-3 yield comparative savings of
26% to 30% (by contrast with UDP) in the ratio of con-
nection breakdowns in the system and their associated
costs. Figure 3 show the closely related connection
breakdowns per peer over time.

Both graphs show a clearsawtoothshape resulting
from time-of-day patterns in our Gnutella-originated
traces, something also observed in other studies of
peer-to-peer systems [6, 25]. These time-of-day pat-
terns are especially interesting when one considers the
expected independence of Gnutella logical topology
from geographic location [6].

It would be expected that the lifespan-based proto-
cols’ preference for long-lived peers will lead to higher
numbers of connection requests to these nodes and,
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consequently, a higher overall number of connection
rejections. This higher rejection number may be seen
as a reasonable price to pay for longer-lasting “friend-

ships,” and its cost would become comparatively less
important as peers increase their degree of investment
in their friends. While our most selective protocol
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Figure 4. Connection rejections per peer over time (aggregated over 10,000 sec.). The associated
table shows some basic statistics including average, standard deviation as well as minimum and
maximum observed values.
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(LSPAN-2) has, indeed, a high rejection number, the
rejection number of LSPAN-1 and LSPAN-3, although
higher than that of UDP or HDP, is still low enough

that it can be ignored (Figure 4). From the associated
table of statistics in Figure 4, for example, we could
see that the average connection rejection number per



peer for LSPAN-1 is only 0.859 for every 10,000 sec-
onds. This number further drops to 0.158 for LSPAN-
3, meaning that, in average, a peer will only face a
connection rejection every 17.58 hours!

It is interesting to note that the number of actual
connections per peer does not directly follow from
the number of rejections experienced by it. While all
LSPANs protocols result in higher, if only minor, re-
jection numbers than UDP and HDP, LSPAN-1 and
LSPAN-3 have even higher ratios of connections per
peer than both UDP and HDP (Figure 5). Recall that
LSPAN-1 and LSPAN-3 select long lasting peers from
a random set of candidates and, in the case of LSPAN-
3, with some knowledge of the candidate peers’ avail-
able incoming connections. This can explain their high
connection numbers, resulting from both long lasting
connections (compared with UDP and HDP) and low
rejection numbers (by contrast with LSPAN-2).

6 Conclusions and Future Work

We have presented trace-driven simulation results
that illustrate the potential advantages of considering
peers’ observed lifespan distributions as a key system
attribute in the design of P2P protocols. From inde-
pendent measurements of peer lifespan in a current
P2P system we developed a functional form that fits
the distribution well. We use this distribution as the
basis for a number of illustrative P2P protocols which
we compare against two alternative ones for decentral-
ized and unstructured or loosely-structured P2P sys-
tems. We find that even simple lifespan-based proto-
cols can achieve up to 42% reductions in the ratio of
connection breakdowns and their associated costs.

We are currently exploring the effect of lifespan-
based protocols in different query and caching algo-
rithms for P2P systems. While decentralized and un-
structured protocols could yield more resilient sys-
tems, naive implementations of query mechanisms in
these systems have been shown to scale poorly [15].
As part of our future work, we are investigating the
benefits of the higher resilience of lifespan-based sys-
tems on the hit rates and response times of more scal-
able search mechanisms [15, 27]. Similarly, while po-
tentially highly beneficial [28, 23], the effectiveness of
caching in P2P systems will be directly connected to
the lifespan of the caching peer. We have also started

to experiment with these and similar ideas in the con-
text of highly structured protocols [29, 30, 22, 18].
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