
Differential Data Protection for Dynamic Distributed Applications

Patrick Widener and Karsten Schwan
College of Computing

Georgia Institute of Technology�
pmw,schwan � @cc.gatech.edu

Fabián E. Bustamante
Department of Computer Science

Northwestern University
fabianb@cs.northwestern.edu

Abstract

We present a mechanism for providing differential data
protection to publish/subscribe distributed systems, such as
those used in peer-to-peer computing, grid environments,
and others. This mechanism, termed “security overlays”,
incorporates credential-based communication channel cre-
ation, subscription and extension. We describe a concep-
tual model of publish/subscribe services that is made con-
crete by our mechanism. We also present an application,
Active Video Streams, whose reimplementation using secu-
rity overlays allows it to react to high-level security poli-
cies specified in XML without significant performance loss
or the necessity for embedding policy-specific code into the
application.

1 Introduction

Distributed applications and end users interact by dy-
namically sharing data, exchanging information, and us-
ing or controlling remote devices. In scientific endeav-
ors, for instance, researchers remotely access resources
like microscopes[4], 3D displays[28, 12], and may even
wish to operate sophisticated components like the Toko-
mac fusion facility. In industry, companies share parts
designs[10] or other data critical to their operation. Ex-
amples include Schlumberger’s oil exploration processes
where reservoir simulation data produced in computer cen-
ters should be shared with ’on site’ personnel conducting
drilling[32], and where simulations should use well logs to
refine current drilling procedures. Another example is the
airline industry, as with Delta Air Lines’ sharing of flight
and passenger information with third parties who distribute
such data to select passengers for cellphone-based passen-
ger notification[26]. Finally, in remote sensing and control,
radar or camera data or telemetry/biometric information is
captured, forwarded to, analyzed, and used by interested re-
mote parties, sometimes involving remote control loops, as
in telesurgery and targeting.

In many such applications, remote users are not inter-
ested in and/or should not see all of the data all of the
time. Also, the criteria for these “which/whether” deci-
sions can change rapidly. In fact, dynamic interest changes
sometimes help make the implementation of such sys-
tems or applications feasible, by enabling dynamic data
reduction[35], or they are used to optimize implementa-
tions, as with lossy multimedia[22]. Consequently, there
are conceptual models for such changes, including context
sensitivity[14] in human-centered ubiquitous applications,
spatial or temporal locality in pervasive and distributed
systems[36, 6], and current focus or viewpoint in remote
sensing, graphics, and visualization[21]. Finally, whether
implicitly determined or explicitly captured by quality of
service expressions[29, 30, 3], the occurrence of dynamic
interest changes in applications and systems is accompa-
nied by the wide range of effects they can have, starting
with simple changes in data selectivity applied to ongo-
ing information exchanges[21], continuing with the need
to apply varying transformations to data[22, 28, 24], and
also including real-time control reactions as in dynamic
sensor repositioning or in telepresence[9] or teleimmersive
applications[31].

Security and Protection in Dynamic Data Systems. The
general problem addressed in this paper is:

� How can appropriate security and protection can be as-
sociated with the data exchanges that take place in dy-
namic systems and applications?

In remote instrumentation and sensing, for instance, costly
physical infrastructure must be protected from unauthorized
or inappropriate access. In remote telemetry, privacy con-
cerns may prevent us from implementing key safety func-
tionality, as evidenced by applications like smart cars[20]
or remote biometric monitoring. In cooperative scientific
and engineering endeavors, end users wish to protect cer-
tain elements of the data being shared, such as the high res-
olution reservoir modeling data Schlumberger cannot make
available to its competitors, or certain materials properties



which parts designers do not want to disclose. Similarly,
in remote monitoring and e-commerce, it is critical to en-
sure that only certain elements of data streams are made
available to remote parties, as with airlines’ caterers who
should not receive data about passenger identities but must
know about their food preferences, or as with the disclosure
of passenger or tracking information to federal agencies in
cases of potential criminal activities.

Differential Data Protection in Dynamic Data Systems.
The target systems and applications addressed by our
work are distributed applications in which continuous data
streams are produced or captured, distributed, transformed,
and filtered, in order to make appropriate data available
where and when it is needed[28, 24]. The specific problem
we address for such applications is that:

� developers typically organize the data being ex-
changed to meet functional needs, whereas

� security requirements may require different data orga-
nizations, distributed, and access patterns.

A simple example is a distributed sensor application in
which data captured from multiple remote sensors is com-
bined into a larger composite stream, as needed for sensor
fusion or simply to take advantage of bandwidth improve-
ments derived from the use of larger messages, for example.
Programs operating on the composite stream can access all
of the captured data, thereby increasing the potential dam-
age from security violations. In this case, the problem to be
solved is to protect the composite stream such that its data
can only be accessed and used differentially.

Differential data protection for a data stream is defined
as the ability to: (1) give only certain users or programs
access to the data being transported or stored, (2) protect
individual entries in data items, as when an airline provides
caterers access to select portions of passenger records (e.g.,
indications of food preferences), and (3) limit the transfor-
mations and manipulations (i.e., services) that may be ap-
plied to data, as when preventing certain data manipulations
that can extract or derive sensitive data (e.g., identifying
faces in captured video). The data exchanges explored in
detail in this paper derive from our ongoing research in sen-
sor systems[2, 30, 37] and in adaptive security[33], where
it is important to not only protect access to data, but also
to operate on the data itself to prevent its inappropriate use,
as when sensor images that contain some highly secure data
(e.g., persons’ faces, identified military objects) are ‘fuzzed
out’ or ‘blacked out’ prior to distribution to others.

In summary, for any given data stream, the key ques-
tion we ask is how to protect and secure certain data in that
stream, distinguished by data type (e.g., ‘passenger id’ field

of the ‘passenger’ event) and/or data content (e.g., data val-
ues and positions associated with face recognition). A sec-
ond question is how to enforce such differential protection
across multiple such streams in a distributed environment,
where enforcement concerns the imposition limitations on
certain stream manipulations by specific end users, as well
as the ability to access specific stream data.

Security Overlays in Data Distribution Middleware.
Our approach to attaining differential data protection aug-
ments data distribution middleware with additional security
mechanisms, where security meta-information is automati-
cally associated with the data being exchanged. Such meta-
information is then used by middleware to guarantee that
data is only accessible to and manipulable by authorized
parties and that the manipulations by those parties are au-
thorized as well. Essentially, we overlay onto existing data
exchanges the security and protection currently needed. Se-
curity overlays are entirely dynamic, meaning that they can
be changed and updated independently of the data streams
they affect, where overlays may be altered while data ex-
changes are ongoing. The intent is to make security over-
lays as dynamic as the underlying systems being used and
the applications being targeted.

Our current implementation of security overlays is in
middleware running on standard operating system plat-
forms. This implies that differential data protection is en-
forced only within the confines of the middleware infras-
tructure, and it requires that in addition to the data protec-
tion implied by security overlays, middleware must utilize
authentication methods to ensure that data is not manipu-
lated in unauthorized ways. The specific mechanism used
is credentials, early examples of which are capabilities in
systems like Hydra[23]. A credential is applied to some
data stream, named by a channel identifier. This creden-
tial encapsulates a reference to a set of typed objects in
the data stream and rights to these objects. The credential
also serves to identify its bearer as an authenticated client.
Based on the credential’s meta-information (i.e., the type
information), two actions may be taken with respect to the
data stream. First, a handler may be applied to the stream,
and the handler’s operations can extract from the stream
data of a certain type (e.g., of type ‘passenger food pref-
erence’) or transform the stream’s data into a new form by
applying computations to it (e.g., computing statistical in-
formation). Second, the newly created data can be routed
to the client identified in the credential, the latter identi-
fied by a client description. This description currently con-
tains an authenticated client identifier, but it can also use
a more general way of identifying clients, such as trust
levels, client roles, or group memberships (e.g., through
community-based authentication[27, 5]).

A new data stream created by a handler is not actually

2



produced until a routing action has been applied to it by
some client authorized to receive this data. Such routing ac-
tions can be applied multiple times, by multiple authorized
clients, thereby enabling the broad and flexible distribution
of data required by the collaboration and remote sensing
applications targeted by this work. The middleware imple-
mentation ensures that handlers and the data they produce
are not executed unless the data is actually routed to some
client. Routing actions can also be undone separately from
the handler’s creation of new data, thereby implementing a
form of revocation[23]. Revocation can be performed by
any client able to present a suitable credential.

Key Results. The key contributions of this work include
the overlay mechanism for providing differential data pro-
tection to distributed, high-performance applications. Also,
we show that such a mechanism can provide this level of
protection functionality at little critical-path performance
cost to the application. We show this by describing the
effect of using the mechanism in a sample application de-
scribed next.

2 Differential data protection in a distributed
multimedia application

In this section we describe a representative application
that can benefit greatly from differential data protection
mechanisms.

2.1 The Active Video Streams application

We created Active Video Streams (AVS) to explore
issues with deploying adaptive, high-performance data-
streaming services in a distributed environment. By adap-
tive, we mean the ability of the application to react to
changes in environmental conditions (network congestion,
for example) or application-specific considerations (such
as input from a human user). We also seek to provide
such adaptive behavior at little or no cost in terms of
run-time communication latency, bandwidth consumption,
or more complicated costs associated with application re-
engineering. Figure 1 shows the arrangement of the AVS
application.

AVS consists of two components which communicate
through the ECho [17] middleware system. The first com-
ponent is a webcam driver that sends images along the com-
munications link. An off-the-shelf webcam is used for this
purpose, connected to a computer through a standard USB
port. The webcam driver shares memory with the operating
system USB driver. Images recorded from the camera are
converted to PPM images and encoded with using a data-
format system called PBIO [16]. Encoding data using PBIO

provides a well-defined data structure for the middleware
and application, as well as allowing AVS to ignore data het-
erogeneity issues (such as word-endianness).

Each data packet represents one frame from the video
camera. The encoded data packets are then sent along an
ECho event channel to the receiver component.

At the receiving end of the event channel, the other AVS
component decodes the data from its wire-format represen-
tation using PBIO. AVS has two modules that can fill the
role of the receiver component. One is a simple listener that
writes frames to the local filesystem as they are received.
The other is a Java-based viewer (the player) that provides
the user with an interface on which each successive frame
is shown. By using the viewer interface, the user effectively
can see the real-time view picked up by the webcam.

Both receiving components allow the user to specify
adaptive behavior that affects the data stream. For exam-
ple, the user can choose to reduce the size of the image
being streamed from the webcam driver to minimize net-
work usage. These behaviors are implemented using ECho
derived event channels. A derived channel is one that has
an application-specified filter applied to it (Figure 2). These
filters are provided as E-Code, a C-like language with modi-
fications for safer computing (elimination of dynamic mem-
ory allocation and pointer manipulation, for example). The
process of applying a modification to a stream is called
derivation and a new event channel hosting the modified
stream is created1. AVS handles the details of channel
derivation without user intervention.

An example of such an application modification is the
following. The default configuration for the webcam is to
send RGB images. Suppose that a particular user wishes to
instead see greyscale images from this webcam. This could
be due to network conditions, where the 66% reduction in
data being transferred might well improve performance. It
is also possible that certain applications might better serve
users if the image stream could be converted to greyscale
on demand. The stream modification necessary to do the
greyscale conversion is a piece of E-Code that performs a
mathematical transformation on each pixel of the color im-
age to produce a greyscale image.

2.2 Implications for security policy

The modifications described above have both clear and
subtle implications for application security policy. With-
out a mechanism to provide data protection, the only policy
that can be enforced is “anything goes”. In AVS terms, this
means that anyone who can deduce an event channel iden-
tifier can access the image stream on that channel.

1For more information on E-Code and the creation of derived event
channels, see [15].

3



Webcam Webcam driver / video source
Video sink / player

Source

Filtering
Control GUI

Channel
Derived

802.11b Ethernet

Figure 1. The Active Video Streams (AVS) applications consists of a camera driven by a separate
host machine. This host machine serves as a video source and transmits images from the camera
over a wireless communication link to a Java player application. The player application incorporates
a control interface which can install filters on the event channel connecting the two hosts.

FEvent

Source

Event
Channel Event

Channel

Derived

Process A

Event
Sink

Process B

Figure 2. Derived event channels are created by applying a filter function to the output of an existing
event channel.

“Access”, in this context, can have several meanings.
Suppose Mr. X is able to construct an event channel identi-
fier. He might simply want to consume the event stream in
the normal way, watching the video feed from the AVS web-
cam. For traditional access control and data protection sce-
narios, where access is restricted to the minimum required
for any particular task, this is already an intolerable situa-
tion.

Mr. X is also able to tap the event stream and re-purpose
it according to his own plans. Perhaps most alarming, the
derived channel facilities described in the previous section
can be used to introduce arbitrary modifications into the
channel, including those designed to attack the stability of
the application. In practical terms, a handler containing an
infinite loop that is installed on a channel would effectively
deny service to all clients of the channel.

The security policy statements suggested by Mr. X’s po-
tential actions are straightforward: “Only authorized users

are allowed to consume data”; “No end user can install
modifications on a channel”; “Only modifications C and D
are allowed on this channel”. Decoupling such policy state-
ments from application code is also clearly preferable.

A flexible mechanism to implement security policy is
also necessary. For example, publish/subscribe systems
have attracted a great deal of attention due to the anonymity
they afford their users - a publisher generally has no
knowledge of the number or identity of subscribers. Pub-
lish/subscribe systems like AVS, however, clearly need the
ability to differentiate between degrees and types of access.
Meaningful security policy for AVS necessarily identifies
at least classes of subscribers. Complicating matters is the
dynamic nature of the application, where rapidly changing
execution conditions (location of a mobile sensor, or time
of day, for example) may dictate immediate security policy
changes. A desirable mechanism should be able to imple-
ment general policy constraints (“User A lacks privilege to

4



install the greyscale filter”) without requiring the expres-
sion of those constraints in the application code. Also, such
a mechanism is able to provide dynamic data protection as
application policies change.

3 A model for differential data protection

In this section, we present a model for a protection mech-
anism that allows us to provide application-specific protec-
tion actions on structured data. These protection actions can
be differentiated based on the structure of the data or other
application considerations.

3.1 Foundations

We assume a system in which peered hosts exchange in-
formation using a publish/subscribe metaphor. In this sys-
tem, event channels serve to transport information from host
to host. The information flows between hosts can be stream-
or packet- based, depending on application requirements.
Events are discrete packets of information. A decentralized
system of data types is applied to these packets. Hosts that
do not recognize a particular type identifier can retrieve the
definitions and any conversion information associated with
that type either from a known location or from the sender.
This allows us to assume a “global” type space without nec-
essarily centralizing all type information.

We choose the event-based data exchange paradigm be-
cause of its importance to the class of applications targeted
by this research. Event-based communications are widely
used in the operational information systems used by com-
panies like Delta Air Lines[26]. They are also the basis
for large-scale information distribution systems like stock
update notification[35]. Finally, they have been shown use-
ful as a middleware basis for online collaborations in dis-
tributed engineering and science endeavors[28], and for the
distributed sensor applications used as an example in this
paper[2, 37].

3.2 Structure of credentials

A credential may be viewed as an abstract data type con-
taining information needed and/or generated by the protec-
tion mechanism (Figure3 illustrates this). A credential con-
tains an object descriptor (OD), which uniquely identifies
the object to which the information in the credential applies.
This descriptor might be made concrete in an implementa-
tion as an object unique identifier, or, since we propose a
system of types, as a combination of a instance UID with a
type UID.

The other half of the classical capability format is a col-
lection of rights. Rights govern operations that are possible
for the object identified by the OD or on the credential itself.

Object Descriptor

Object−specific rights

Payload

Crypto

Rights

Client Descriptor

Update Channel

... object ID and type ID

... cryptographic protection against forgery or replay

...rights specific to the object type

... general credential rights

..authenticated client/role name or ID

...event sink for revocations or other updates

...type−specific information

Figure 3. Credential structure detail.

Certain other special rights are indicated in the credential,
like the ability to transfer ownership of a credential.

Ownership of credentials implies a mapping between
credentials and owners. This mapping is represented by
a client descriptor (CD) in the credential. The CD con-
tains an authenticated (signed by a trusted entity) specific
and unique client name. The entity named by the CD may
take several forms. It may be a principal in a security pol-
icy matrix that represents a real-world person. It could also
be the name of a security role, allowing role-based access
control. Finally, the CD contains a trust-level designation,
which may be used by authenticating entities to propagate
trust or reputation characteristics.

Credentials contain a signed hash of their contents to
guard against forgery. The signature can come from a
trusted third party (one such party is described later) or from
an arbitrary host in the system. In a case where an arbitrary
host has signed the credential, the trust designation can be
used to help make decisions about how reliable the contents
may be.

The different object types to which credentials can re-
fer are event channels themselves, source (submission) and
sink (reception) handles to those channels, code segments
(or references to them) used to extend or modify the behav-
ior of event channels, and types and the conversions used to
encode and decode data to and from transport format.

We are aware of the heavy reliance on cryptographic
methods necessary to ensure the integrity of credentials.
While highly-secure cryptography is expensive, our design
minimizes the associated performance impact in two ways.
We strive to keep cryptographic operations out of the “criti-
cal path” of information exchange as much as possible. For
example, our mechanism makes it unnecessary to verify the
integrity of a credential on every event submission or re-

5



ception. Where cryptographic operations are necessary, we
offer unique approaches designed to minimize their cost.

3.3 Routing

The publish/subscribe metaphor is anonymous in that
event producers or sources do not necessarily know the
identity, location, or number of event consumers. Over-
lays allow interested clients to route data streams to them-
selves by encapsulating the notion of subscription. Under
the overlay mechanism, only authorized clients are permit-
ted to subscribe to a channel. Credentials are used to in-
dicate this situation - an authorized client is one that pos-
sesses a credential naming a particular channel in its object
descriptor and the client in its client descriptor, and which
has the route right indicated.

3.4 Handlers

Previous research [8] has demonstrated the effectiveness
of associating code with event channels. This code can per-
form actions on the events passing through the channel or on
the channel itself. Through this activity, event transmission
can be efficiently customized for heterogeneous endpoints,
dynamically varying network conditions, or application-
specific purposes.

We call such code associated with an event channel a
handler. In this position the handler can inspect each event
passing through the channel. Since the events have specific
types, the handler can perform a detailed, application-aware
examination of the event. This allows the handler to per-
form actions based on the content of the event.

The event channel abstraction is designed to support
anonymous subscription and data transfer. A motivating
example for the development of AVS is the multiplexing
of different levels of service across a single event submis-
sion from a source. The ability to do this reduces com-
plexity at event sources. The anonymous nature of pub-
lish/subscribe systems is also preserved, as sources need not
know which sinks are entitled which level of service. Flex-
ibility in locating sources is also important, as low-power
and -bandwidth constraints dictate that network transmis-
sion activity be kept to a minimum.

A typical AVS source is a webcam producing 640x480
color images. In this context, service level equates to stream
quality - size, color depth, and frame rate are all axes along
which AVS can differentiate service level. An obvious ex-
ample where differentiation is desirable is an AVS instance
where subscribers receive a basic level of service and must
pay for higher service levels (or potentially special function-
ality). Other scenarios are equally valid, however - consider
an instance where certain users are not allowed to view par-
ticular regions of the transmitted images.

A transformation is an overlay operation that allows ap-
plications like AVS to accomplish such tasks. Recall that
the events exchanged by AVS are typed, with well-defined
structure. Transforming handlers take events of one type
and convert them to events of another type. A transforming
handler, for example, can scale a 640x480 image down to
half the original size for clients who desire or are only en-
titled to such images. Other image transformations imple-
mented in AVS include greyscale conversion, image mirror-
ing, and advanced transformations such as edge detection.

At the data structure level, a transforming handler re-
ceives a data structure as input, performs some compu-
tation on the contained data, and produces a structure of
a different type as output. In the greyscale conversion
case, a 640x480x3 (for RGB color) image is converted to
a 640x480x1 image. The practical consequence of this is
that the quantity of data output by the handler is one-third
of the data the handler receives. Figure 4 illustrates this.

The overlay mechanism enforces the “assignment” of
sink subscriptions to channels with appropriate transforma-
tion handlers (appropriate being an application-defined term
here). Since credentials contain unforgeable references to
channels (among other object types), a subscription requir-
ing a particular credential implicitly restricts access to the
image stream on that channel.

The transformation operation implies several rights-
based operations. Since we have a quasi-global type sys-
tem, we can make statements about whether a principal (re-
ally an entity identified by a client descriptor in a credential)
can transform data to or from a type. Since channels are ob-
jects, we can also now talk about whether a handler can be
installed on the channel that performs transformations on
type of event being carried by the channel. A credential
indicates these rights in its type-specific rights field.

3.5 Other infrastructure

The overlay mechanism relies on several other pieces of
infrastructure; we briefly describe these here.

Security manager. Overlays require a trusted third party
for several reasons. Most important is to issue cre-
dentials and vouch for their integrity. How such cre-
dentials are obtained is an open problem; we will re-
fer to an outside agency called the Security Manager
(SecMgr) which is the single point of contact for ob-
taining and revocation of credentials (as stated be-
fore, credentials are cryptographically secured against
forgery). SecMgr’s may choose to implement differ-
ent security policies; credentials may be granted or
denied based on challenge/response mechanisms like
the UNIX login process, for example. It is the job
of SecMgr to determine whether or not credentials are
granted and for what period(s) of time they are valid;

6



transforming
handler

type A type B

event event

{
int x;
char y;
int data[921600];
}

{
int x;
char y;
int data[307200];
}

Figure 4. Transforming handlers take one type of data as input and produce a different type as output.
In this example, the handler converts the image data in the data array of the input type to greyscale
from color, reducing its size by a factor of 3.

it is the job of the overlay mechanism, given properly
obtained credentials, to ensure that no access except
that specified by those credentials is allowed. This is
the essence of the separation of policy and mechanism
seen in systems such as Hydra that we apply to our
own work.

Directory service. Client descriptors in credentials use
globally unique names. This implies a global names-
pace and further that there needs to be some tool to
coordinate access to the namespace. We rely on a di-
rectory service for this task. Applications can query
the directory service to find information on objects or
principals in the system.

Code repository. To install a particular handler, the loca-
tion of an appropriate repository is retrieved from the
directory service. This location is provided to appli-
cations in the form of a credential, with the object de-
scriptor naming the repository and the client descrip-
tor naming the application. The repository validates
this credential and (with the cooperation and assistance
of SecMgr) replaces the credential with one naming a
specific piece of code.

4 Applying the model to AVS

We now describe how some of the concepts expressed in
the overlay model have been realized in the AVS applica-
tion. These concepts allow us to provide differential data
protection to the AVS application. In turn, this differen-
tial protection allows the application to conform to various
security policies without embedding those policies in appli-
cation code. We also present empirical results that support
our claims that the mechanism provides high-performance
communication rates as well as the ability to perform dif-
ferential data protection.

4.1 Supporting application-specific security pol-
icy

As stated earlier, a design goal of the overlay model
is to support application-specific security policies without
requiring application modification. We modified the AVS
application to use a partial implementation of the overlay
model. These modifications can be broken down into three
parts: use of application policy descriptions, implementing
a repository of handlers managed by secure infrastructure
components, and code changes to the AVS application to
use overlay credentials instead of direct references to the
underlying middleware system.

4.1.1 Application policy descriptions

Our system uses XML [1] descriptions of security policies,
with associated XML schemas to aid in policy definitions.
We envision these descriptions being produced in several
different ways: by graphical applications provided to end
users, by automatic inspection of user databases and exist-
ing access control matrices, or by a local SecMgr instance
in response to changing application or environmental condi-
tions. XML provides a common, well-defined interchange
format. We use HTTPS requests to retrieve them from stan-
dard web servers, providing both integrity of the policy de-
scriptions and indirection to allow flexibility in policy de-
ployment.

Note that since we are primarily interested in defining
a mechanism capable of implementing a wide range of se-
curity policies, we are not concerned with issues such as
reconciling conflicting policy statements, cached access to
policy statements, or implementation of a general constraint
engine. These issues are being addressed by others [11] and
we rely on the interchange capabilities of our XML inter-
face to provide interoperability.

For the AVS application, there are three types of policies:

7



those applied to the image regardless of what filter(s) might
be installed, those governing access to image streams, and
those governing access to filters for a particular stream. The
first type of policy includes statements such as “the lower
half of the image stream from camera A should be blurred”
or “the lower half of all image streams viewed by user X
should be blurred”. Access control policies for streams in-
corporate statements of the type “user X cannot access cam-
era Y under condition Z”. The final type of policy statement
includes statements such as “user X cannot install filter Y”.

Policy files for an application are provided to the SecMgr
(via Uniform Resource Locator (URL)) when requests for
credentials are made. The SecMgr, as described earlier, is
responsible for generating and returning credentials as ap-
propriate. Given appropriate credentials, the overlay mech-
anism will grant the indicated access.

Note that the mechanism may implement a policy by
taking some action, not simply by granting or denying ac-
cess. For example, assume that a particular camera views
a sensitive area, and images are to be blurred in, say, the
south-west quadrant. The mechanism prohibits any stream
subscriptions without an appropriate credential. Appropri-
ate credentials are only obtainable from the SecMgr, which
requires the policy file containing the south-west quadrant
restraint. Any AVS instance attempting to route the image
stream (subscribe to it) must obtain a credential with route
rights from the SecMgr. Any such credential issued by the
SecMgr will contain an indication that a blur filter should
be installed on the stream, but this will not be visible to the
AVS instance requesting the route action. As far as the AVS
instance is concerned, its route request succeeds and it gains
access to a image stream. However, the blur filter that is
implicitly installed (in response to the modified credential)
blurs out the desired part of each transmitted image.

4.1.2 Filter repository

The filters used by AVS are described by XML documents
residing on either the local filesystem of the receiving com-
ponent or on an HTTP server accessible to it. A request for
one of these filters is supplied by the player as a creden-
tial to the overlay mechanism. The credential is decoded
to recover a URL indicating the location of the filter to be
installed. The resulting XML document is retrieved, parsed
to recover any associated metadata. The filter code may be
contained directly in the XML document (usually if the fil-
ter is expressed in E-code), or the document may have a ref-
erence to the code repository (if the filter is a shared object
to be loaded at run-time). Figure 5 shows how this process
is accomplished.

4.1.3 Using credentials

The original implementation of AVS used direct references
to objects of interest to the protection mechanism. These
objects include names of communication channels and fil-
ters. The filters were directly embedded in the application
code or could be provided directly by the user. These refer-
ences and the code surrounding them were changed to use
credential-based access exclusively. While this implies a
number of additional network round-trips (for creation of
credentials and retrieval of filters), the performance of the
image stream itself is not affected. Since un-credentialed
access to the image stream is not possible, the underlying
performance of the AVS application is not significantly de-
graded.

Code
Repository

Protected
middleware

Check validity of credential
Extract URL

credential 
containing URL

of filter

request for
filter code

XML document 
containing filter

& metadata

AVS Player

credential for
derived channel

Verify filter
Derive new channel

Subscribe player
to new channel

Figure 5. Graphical depiction of the interac-
tion between AVS, the protection middleware,
and the code repository during the channel
derivation process.

4.2 Experimental results

We profiled the modified AVS application against the
original application in order to establish the amount of over-
head the overlay mechanism imposes. For each middleware
action, we recorded the percentage increase in time required
to complete the action. Experiments were conducted using
RedHat Linux 7.3 on a Dell Latitude C610 laptop computer
as the video source (connected to the webcam), connected
to the sink by a 802.11b wireless Ethernet link that feeds
into the campus wired Ethernet. The video sink ran on

8



RedHat Linux 7.3 on a 600 Mhz PIII processor-based ma-
chine connected via 100Mbit Ethernet. The following table
presents some representative results from these tests.

middleware operation percentage overhead
channel create 4.52

channel subscribe 3.32
filter install 8.55

filter uninstall 3.33
The primary attractiveness of our mechanism is that its

performance overheads are not in the critical path of data
transfer. Once access to the channel has been established
or a filter installed, data transfer proceeds at speeds lim-
ited only by the underlying middleware or network. Even
in those situations where the mechanism does have a per-
formance impact, the impact is minimal. We attribute the
relatively long time taken to install a filter using the overlay
mechanism to the network round trips necessary between
the AVS application, the code repository, and the SecMgr.
Furthermore, previous experience[7] has shown that using
XML as a wire format leads to large network overheads.
We believe that the interoperability advantages gained by
using XML outweigh the performance impact, especially
since the critical data transfer path is unimpeded.

5 Related work

Our conception of security overlays has most in common
with the capability model proposed by Dennis and Van Horn
and realized in Hydra[23]. In addition, we have adopted the
principle of separation of policy and mechanism for the de-
sign of overlays. It is our intention that overlays be able
to address a wide range of application security policies in
a publish/subscribe environment. [11] presents a policy-
definition architecture that is a useful example of the type
of system overlays is designed to support.

The use of XML as a policy definition tool has also
been a subject of previous work. [13] introduces a method
of defining access restrictions on Web documents using
XML. The Security Services Markup Language[25] pro-
poses a method for expressing security models in XML.
Additionally, although based on UML rather than on XML,
QML[19] presented a method of describing system-level
policies in an abstract fashion.

Several distributed computing and publish/subscribe ap-
proaches have at least partially addressed the issue of se-
curity policy and protection mechanisms. Grid computing
approaches[27] are pursuing consensus on how to approach
authentication and authorization issues over a widely dis-
tributed computing context. The Legion project[34, 18] is
an object-based Grid computing infrastructure with a robust
security architecture that features rights-based delegation of
duties. We seek to develop solutions that are primarily ap-
plicable in a publish/subscribe context but that also may be

useful for Grid researchers.
Finally, we note that the security and safety of a run-

ning application can be interpreted broadly as a quality-of-
service issue. Our work bears similarity to BBN’s Qual-
ity Objects[29] in its aspiration to apply a general policy
(whether more traditional performance-based QoS or secu-
rity) to a distributed system.

6 Conclusion

We have presented a method of providing differential
data protection to applications through the use of a novel
protected middleware mechanism. This mechanism, secu-
rity overlays, provides applications with the ability to re-
spond to high-level security policy information while pre-
serving high-performance communication. We have also
presented an application, Active Video Streams, that uses
security overlays to implement a range of security policies.
We have shown that the performance impact of our pro-
tected middleware layer is minimal, and occurs outside the
critical path of data transmission.

Acknowledgments

This work was supported in part by an Intel Foundation
Graduate Fellowship.

References

[1] The extensible markup language (XML).
http://www.w3.org/TR/1998/REC-xml-19980210.

[2] The infosphere project.
http://www.cc.gatech.edu/projects/infosphere.

[3] T. F. Abdelzaher and K. G. Shin. Qos provisioning with
qcontracts in web and multimedia servers. In IEEE Real-
Time Systems Symposium, Phoenix, Arizona, December
1999.

[4] A. Afework, M. Benyon, F. E. Bustamante, A. DeMarzo,
R. Ferreira, R. Miller, M. Silberman, J. Saltz, and A. Suss-
man. Digital dynamic telepathology - the virtual micro-
scope. In Proceedings of the AMIA Annual Fall Symposium,
August 1998.

[5] D. Agarwal, M. Lorch, M. Thompson, and M. Perry. A new
security model for collaborative environments. In Proceed-
ings of the Workshop on Advanced Collaborative Environ-
ments, Seattle, WA, June 2003. LBNL-52894.

[6] M. Ahamad, G. Neiger, P. Kohli, J. Burns, and P. Hutto.
Causal memory: Definitions, implementation, and program-
ming. Distributed Computing, August 1995.

[7] F. Bustamante, G. Eisenhauer, K. Schwan, and P. Widener.
Efficient wire formats for high performance computing. In
Proceedings of Supercomputing 2000, November 2000.

[8] F. E. Bustamante. The Active Streams Approach to Adaptive
Distributed Applications and Services. PhD thesis, Georgia
Institute of Technology, November 2001.

9



[9] W.-W. Chen, , H. Towles, L. Nyland, G. Welch, and
H. Fuchs. Toward a compelling sensation of telepresence:
Demonstrating a portal to a distant (static) office. In T. Ertl,
B. Hamann, and A. Varshney, editors, Proceedings Visual-
ization 2000, pages 327–333, 2000.

[10] Y. Chen, K. Schwan, and D. Rosen. Java mirrors: Building
blocks for remote interaction. In Proceedings of the Interna-
tional Parallel Distributed Processing Symposium (IPDPS),
April 2002.

[11] M. J. Covington, P. Fogla, Z. Zhan, and M. Ahamad. A
context-aware security architecture for emerging applica-
tions. In Proceedings of the Annual Computer Security Ap-
plications Conference (ACSAC), Las Vegas, Nevada, USA,
December 2002.

[12] C. Cruz-Neira, D. Sandin, and T. Defanti. Surround-screen
projection-based virtual reality: the design and implemen-
tation of the cave. In Proceedings of the SIGGRAPH 1993
Computer Graphics Conference, 1993.

[13] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati. A fine-grained access control system for xml
documents. ACM Transactions on Information and System
Security, 5(2):169–202, May 2002.

[14] A. Dey and G. Abowd. The context toolkit: Aiding the de-
velopment of context-aware applications. In Proceedings
of the Workshop on Software Engineering for Wearable and
Pervasive Computing, Limerick, Ireland, June 2000.

[15] G. Eisenhauer, F. E. Bustamante, and K. Schwan. Event
services in high performance systems. Cluster Computing:
The Journal of Networks, Software Tools, and Applications,
4(3):243–252, July 2001.

[16] G. Eisenhauer, F. E. Bustamante, and K. Schwan. Native
data representation: An efficient wire format for high per-
formance computing. IEEE Transactions on Parallel and
Distributed Systems, 13(12), December 2002.

[17] G. Eisenhauer, K. Schwan, and F. Bustamante. Event ser-
vices for high performance computing. In Proceedings
of High Performance Distributed Computing 2000 (HPDC
2000), 2000.

[18] A. Ferrari, F. Knabe, M. Humphrey, S. Chapin, and
A. Grimshaw. A flexible security system for metacomputing
environments. Technical Report CS-98-36, Department of
Computer Science, University of Virginia, Charlottesville,
Virginia 22093, USA, December 1998.

[19] S. Frolund and J. Koistinen. Quality of service specification
in distributed operating systems design. In Conference on
Object-Oriented Technologies and Systems. USENIX, April
1998.

[20] R. Herttwich. Keynote address at ARCS 2001.
[21] C. Isert and K. Schwan. ACDS: Adapting computational

data streams for high performance. In Proceedings of In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), May 2000.

[22] C. Kasic and J. Walpole. QoS scalability for streamed media
delivery. Technical Report CSE-99-011, Oregon Graduate
Institute, September 1999.

[23] R. Levin, E. Cohen, F. Pollack, W. Corwin, and W. Wulf.
Policy/mechanism separation in hydra. In Proceedings of the
5th Symposium on Operating Systems Principles, November
1975.

[24] J. López and D. O’Hallaron. Evaluation of a resource se-
lection mechanism for complex network services. In Proc.
IEEE International Symposium on High-Performance Dis-
tributed Computing (HPDC10), pages 171–180, San Fran-
cisco, Aug. 2001.

[25] Netegrity. S2ML: The xml standard for describing and shar-
ing security services on the internet. Technical report, 2001.

[26] V. Oleson, K. Schwan, G. Eisenhauer, B. Plale, C. Pu,
and D. Amin. Operational information systems - an exam-
ple from the airline industry. In Proceedings of the First
Workshop on Industrial Experiences with Systems Software
(WEISS) 2000, 2000.

[27] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and
S. Tuecke. A community authorization service for group
collaboration. In Proceedings of the Third International
Workshop on Policies for Distributed Systems and Networks.
IEEE, 2002.

[28] B. Plale, G. Eisenhauer, K. Schwan, J. Heiner, V. Martin,
and J. Vetter. From interactive applications to distributed
laboratories. IEEE Concurrency, 6(2), 1998.

[29] C. Rodrigues, J. Loyall, and R. Schantz. Quality objects
(QuO): Adaptive management and control middleware for
end-to-end QoS. In OMG’s First Workshop on Real-Time
and Embedded Distributed Object Computing, Falls Church,
Virgina, July 2000.

[30] D. I. Rosu, K. Schwan, S. Yalamanchili, and R. Jha. On
adaptive resource allocation for complex real-time applica-
tions. In 18th IEEE Real-Time Systems Symposium, San
Francisco, CA, pages 320–329. IEEE, Dec. 1997.

[31] N. Sawant, C. Scharver, J. Leigh, A. Johnson, G. Reinhart,
E. Creel, S. Batchu, S. Bailey, and R. Grossman. The tele-
immersive data explorer: A distributed architecture for col-
laborative interactive visualization of large data-sets. In Pro-
ceedings of the Fourth International Immersive Projection
Technology Workshop, Ames, Iowa, 2000.

[32] Schlumberger Limited. http://www.schlumberger.com.
[33] P. Schneck and K. Schwan. Dynamic allocation of security

resources to client-server applications. In IEEE Workshop
on Dependable and Real-Time E-Commerce Systems, Den-
ver, Colorado, June 1998.

[34] G. Stoker, B. S. White, E. Stackpole, T. Highley, and
M. Humphrey. Toward realizable restricted delegation in
computational grids. In Proceedings of European High Per-
formance Computing and Networking (HPCN) 2001, Ams-
terdam, The Netherlands, June 2001.

[35] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller,
B. Mukherjee, D. Sturman, and M. Ward. Gryphon: An in-
formation flow based approach to message brokering. In In-
ternational Symposium on Software Reliability Engineering
’98 Fast Abstrac, 1998.

[36] R. West, K. Schwan, I. Tacic, and M. Ahamad. Exploit-
ing temporan and spatial constraints on distributed shared
objects. In Proceedings of the IEEE International Confer-
ence on Distributed Computing Systems, Baltimore, Mary-
land, May 1997. IEEE.

[37] D. Zhou, K. Schwan, G. Eisenhauer, and Y. Chen. Jecho
- interactive high performance computing with java event
channels. In Proceedings of the 2001 International Parallel
and Distributed Processing Symposium, April 2001.

10


