On Blind Mice and the Elephant *Understanding the Network Impact of a Large Distributed System*

John S. Otto, Mario A. Sanchez, David R. Choffnes*, Fabián E. Bustamante, Georgos Siganos**

Northwestern, EECS

* U. Wash, CSE

** Telefónica Research

Several elephants of the Internet

Several elephants of the Internet

- A large, global peer-to-peer system
- Millions of users exchanging content
- Virtually every country in the world

Perspectives on distributed system measurement

- System's measured network impact depends on measurement vantage point
 - How much of network traffic is from BitTorrent?

Approach to evaluating system impact

- A view from a broad set of end users
 - To sample its overall network traffic
 - Understand where it flows
 - Who pays for it (and how expensive it is)

This work

- Relies on end users as vantage points
 - Captures a sample of all BitTorrent traffic
 - Reveals traffic's path through the network
 - Public view is not sufficient to map most BitTorrent traffic
- ISP data provides context to understand cost of BitTorrent traffic

Our diverse end-user perspective

- Representative sample of users
 - 500,000 users, 3,300 networks, 169 countries
- Running extensions (Ono & NEWS) for Vuze BitTorrent client
 - Anonymously report statistics
 - Provide application-level data
 - e.g. session length, per-connection transfer volumes
 - Log 13 TB of traffic per day
 - Conduct active measurements to reveal traffic paths
 - With public view alone, we can map 25% of traffic
 - Supplemented with traceroutes, we can map 89%

Roadmap

- How BitTorrent is being used
 - Who is using BitTorrent?
 - When do people run BitTorrent?
 - How much traffic does it generate?
 - Study data from Nov. 2008 to Nov. 2010
- Where the generated traffic flows
- Who pays for it and how much

BitTorrent trends: user population

- Overall population reduced by 10%
- Locations of users change over time

- Decrease in Europe
- Increase in Asia, Africa and Oceania

BitTorrent trends: user population

Rate of growth of connected users per continent relative to Nov. 2008

- Europe continues to drop
- N. America, S. America remain stable since 2009
- 76% growth in Africa and 47% in Asia

BitTorrent trends: stronger diurnal patterns

Normalized number of peers seen per hour in Europe, depending on time of day

- Shift away from overnight use
- Peak usage aligns with evening hours, local time
 - Potential impact on ISPs' costs under burstable billing

BitTorrent trends: stronger diurnal patterns

Normalized number of peers seen per hour in Europe, depending on time of day

- Shift away from overnight use
- Peak usage aligns with evening hours, local time
 - Potential impact on ISPs' costs under burstable billing

BitTorrent trends: increased traffic volumes

Per-peer hourly download volume (in MB) over the last year

- 25% increase in per-peer hourly download volume
- Despite a 20% drop in total connections,
 a 12% increase in overall system traffic

Trends in BitTorrent usage and traffic

- Overall population reduced by 10%
 - But large increase in Africa and Asia
- Peak usage aligns with evening hours
- 12% increase in overall system traffic
 - 25% increase in per-peer hourly download volume

So where's the traffic?

Where BitTorrent traffic flows

- How "deep" does traffic go in the network?
- Who is paying for it?
- Traffic path analysis to see which networks carry most BitTorrent traffic
 - Tier 1: Well-known networks
 - Tier 2: Large transit providers
 - Tier 3: Small transit providers
 - Tier 4: Content/access/hosting providers
 Enterprise customers

Traffic's "depth" in the network

Fraction of each peer's traffic that reaches Tier X

- Most traffic stays at or below Tier 3
- Significant fraction of traffic never reaches Tiers 1 or 2
 - Typically missed by in-network monitoring studies from the core

Traffic's "depth" in the network

Fraction of each peer's traffic that reaches Tier X

- Most traffic stays at or below Tier 3
- Significant fraction of traffic never reaches Tiers 1 or 2
 - Typically missed by in-network monitoring studies from the core

Endpoints' tiers determine "depth"

- Traffic generally stays in the originating tier
- Tier 2 networks do not provide "intermediate" level of connectivity between Tiers 1 & 3

Roadmap

- How BitTorrent is being used
- Where the generated traffic flows
 - Most traffic is handled at or below Tier 3
- Who pays for it and how much

Economic implications for ISPs

- Determine BitTorrent cost relative to other traffic
 - ISP X's data provides context to interpret traffic sample
- Study at granularity of individual network links
- Consider common burstable billing model
 - e.g. 95th-percentile billing
- Data for several of ISP X's links over 1 week

95th-percentile billing

- Aggregate link volume for each 5 minute bin
- Cost is based on 95th-percentile bin's value
- Under burstable billing model, not all bytes may have the same cost
 - Peak-hour bytes are more expensive than off-peak

95th-percentile and Shapley value

- BitTorrent at peak hour is more expensive
- Use Shapley value to determine relative cost of BitTorrent
 - Shapley value gives the cost contribution of BitTorrent traffic
 - Compare to other traffic on the network
 - Is BitTorrent's cost more than its "fair share" by volume?

95th-percentile and Shapley value

- BitTorrent at peak hour is more expensive
- Use Shapley value to determine relative cost of BitTorrent
 - Shapley value gives the cost contribution of BitTorrent traffic
 - Compare to other traffic on the network
 - Is BitTorrent's cost more than its "fair share" by volume?

Relative cost of BitTorrent traffic

- BitTorrent traffic is generally more expensive than other traffic
- What traffic characteristics result in high relative cost?

Additional cost of BitTorrent traffic, percent above relative cost of 1

Traffic characteristics and relative cost

- High relative cost of BitTorrent
 - Large coefficient of variation ("C.V.", size of peaks in BitTorrent traffic)
 - Small cross-correlation offset ("X-corr", alignment with overall traffic)

Traffic characteristics and relative cost

	Out-of-phase peaks	Aligned peaks
Small peaks	ISP A X-corr: -7.1 hours C.V.: 130% Relative cost: 13%	ISP E X-corr: 1.6 C.V.: 158% Relative cost: 83%
Large peaks	ISP F X-corr: 7.4 C.V.: 325% Relative cost: 52%	ISP B X-corr: 3.2 hours C.V.: 188% Relative cost: 50%

- High relative cost of BitTorrent
 - Large coefficient of variation ("C.V.", size of peaks in BitTorrent traffic)
 - Small cross-correlation offset ("X-corr", alignment with overall traffic)

Conclusions

- BitTorrent is still alive and costly
 - Most traffic stays at the edge of the network
 - It is moving into prime-time
 - Logically, it is relatively more expensive
- A broad view from the edge of the network is required to see the system's full usage spectrum
- Approach is general to understanding other distributed systems
 - Video streaming
 - Peer-to-peer CDNs