Resilient P2P Multicast from the Ground Up

Stefan Birrer & Fabián E. Bustamante Department of Computer Science Northwestern University www.aqualab.cs.northwestern.edu

The Need for Group Communication

- The need for group communication
 - Online gaming (e.g. www.station.sony.com)
 - Video conferencing (e.g. Access Grid)
 - Bulk data dissemination (e.g. BitTorrent)

The Need for Group Communication

- The need for group communication
 - Online gaming (e.g. www.station.sony.com)
 - Video conferencing (e.g. Access Grid)
 - Bulk data dissemination (e.g. BitTorrent)

The Need for Group Communication

- The need for group communication
 - Online gaming (e.g. www.station.sony.com)
 - Video conferencing (e.g. Access Grid)
 - Bulk data dissemination (e.g. BitTorrent)

IP Multicast as one Solution

- Router replicate messages
- Efficient group communication

End System Multicast

- But, deployment issues with IP Multicast
 - Security, scalability, ...
- Application-layer or end-system multicast

The Problem with Transiency

Median Session Uptime, a good indicator

- 1 hour to 1 minute [Bustamante03,Gummadi03]

Achieve high delivery ratio w/o paying extra in latency, duplicates, control traffic

Cluster based on proximity

 Co-Leader shares forwarding responsibility with Leader

- Measure effectiveness of protocol: *Delivery ratio*
- Cost of resilience: Latency and duplicate packets
- Methodology
 - Peers join the session in the warmup time
 - One publisher streams data
- Compare against
 - Nice [Banerjee02], Nice-PRM [Banerjee03], and Narada [Chu02]

Benefits & Costs

High Churn(MTTF 5' 512 end hosts)	Best delivery ratio
Protocol	Delivery /	Duplicates
	[%] 🖌	[packets/SeqNr]
Nemo	0.998	3.16
Nice PRM(3,0.01)	0.993	12.47
Nice PRM(3,0.02)	0.994	18.20
Nice PRM(3,0.03)	0.994	24.22
Nice	0.992	7.10
Narada	0.852	0.00

Wide-Area Results

Benefit & Cost

Conclusions

• Multicast for efficient group communication

- Transiency can get in the way

- Co-leaders offer a simple yet effective solution
 - Improve resilience
 - Spread the load
- Nemo Resilient overlay multicast
 - 14.6% higher delivery ratio than Narada
 - 50%-85% less Duplicates than Nice & Nice PRM
 - Comparable end-to-end latency

?

Benefit & Cost

Low Churn(MTTF 60 512 end hosts	')	Best delivery ratio
Protocol	Delivery	Duplicates
	% ►	[packets/SeqNr]
Nemo	1.000	0.34
Nice PRM(3,0.01)	0.999	6.42
Nice PRM(3,0.02)	0.999	12.00
Nice PRM(3,0.03)	0.999	16.74
Nice	0.999	1.29
Narada	0.950	0.00

Delivery Ratio under Churn

High Churn, 512 End Hosts

Related Work

- Overlay multicast
 - Nice (Banerjee02)
 - ESM (Chu00, ...), Yoid (Francis00), ALMI (Pendarakis01), ...
- Resilient multicast
 - A lot of work on resilient IP Multicast
 - PRM Probabilistic Resilient Multicast for Overlay (Banerjee03)
- Content Dissemination
 - Bullet (Kostic03)
 - SplitStream (Castro03)
 - BitTorrent (Cohen03)