
FatNemo: Building a Resilient Multi-source Multicast
Fat-Tree

Stefan Birrer, Dong Lu, Fabián E. Bustamante, Yi Qiao, and Peter Dinda

Northwestern University, Evanston IL 60201, USA,
{sbirrer,donglu,fabianb,yqiao,pdinda}@cs.northwestern.edu

Abstract. This paper proposes the idea of emulating fat-trees in overlays for
multi-source multicast applications. Fat-trees are like real trees in that their
branches become thicker the closer one gets to the root, thus overcoming the “root
bottleneck” of regular trees. We introduce FatNemo, a novel overlay multi-source
multicast protocol based on this idea. FatNemo organizes its members into a tree of
clusters with cluster sizes increasing closer to the root. It uses bandwidth capacity
to decide the highest layer in which a peer can participate, and relies on co-leaders
to share the forwarding responsibility and to increase the tree’s resilience to path
and node failures.
We present the design of FatNemo and show simulation-based experimental results
comparing its performance with that of three alternative protocols (Narada, Nice
and Nice-PRM). These initial results show that FatNemo not only minimizes the
average and standard deviation of response time, but also handles end host failures
gracefully with minimum performance penalty.

1 Introduction

High bandwidth multi-source multicast among widely distributed nodes is a critical capa-
bility for a wide range of important applications including audio and video conferencing,
multi-party games and content distribution. Throughout the last decade, a number of re-
search projects have explored the use of multicast as an efficient and scalable mechanism
to support such group communication applications. Multicast decouples the size of the
receiver set from the amount of state kept at any single node and potentially avoids
redundant communication in the network.

The limited deployment of IP Multicast [16,17], a best effort network layer multicast
protocol, has led to considerable interest in alternate approaches that are implemented at
the application layer, using only end-systems [14,24,19,32,11,2,10,33,39,31,35]. In an
end-system multicast approach participating peers organize themselves into an overlay
topology for data delivery. Each edge in this topology corresponds to a unicast path
between two end-systems or peers in the underlying Internet. All multicast-related func-
tionality is implemented at the peers instead of at routers, and the goal of the multicast
protocol is to construct and maintain an efficient overlay for data transmission.

Among the end-system multicast protocols proposed, tree-based systems have proven
to be highly scalable and efficient in terms of physical link stress, state and control
overhead, and end-to-end latency. However, normal tree structures have two inherent
problems:

C.-H. Chi, M. van Steen, and C. Wills (Eds.): WCW 2004, LNCS 3293, pp. 182–196, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

FatNemo: Building a Resilient Multi-source Multicast Fat-Tree 183

Resilience: They are highly dependent on the reliability of non-leaf nodes. Resilience is
particularly relevant to the application-layer approach, as trees here are composed of
autonomous, unpredictable end systems. The high degree of transiency of the hosts 1

has been pointed out as one of the main challenges for these architectures [4].
Bandwidth limitations: They are likely to be bandwidth constrained 2 as bandwidth

availability monotonically decreases as one descends into the tree. The bandwidth
limitations of normal tree structures is particularly problematic for multi-source,
bandwidth intensive applications. For a set of randomly placed sources in a tree,
higher level paths (those closer to the root) will become the bottleneck and tend to
dominate response times. Once these links become heavily loaded or overloaded,
packets will start to be buffered or dropped.

We have addressed the resilience issue of tree-based systems in previous work [5]
through the introduction of co-leaders and the reliance on triggered negative acknowl-
edgements (NACKs). In this paper, we address the bandwidth limitations of normal tree
overlays.

Our approach capitalizes on Leiserson’s seminal work on fat-trees [27]. Paraphrasing
Leiserson, a fat-tree is like a real tree in that its branches become thicker the closer we
get to the root, thus overcoming the “root bottleneck” of a regular tree. Figure 1 shows a
schematic example of a binary fat-tree. We propose to organize participant end-systems
in a tree that closely resembles a Leiserson fat-tree by dynamically placing higher degree
nodes (nodes with higher bandwidth capacity) close to the root and increasing the cluster
sizes as one ascends the tree.

This paper makes three main contributions. First, we introduce the use of Leis-
erson fat-trees for application-layer multi-source multicast, overcoming the inherent
bandwidth limitations of normal tree-based overlay structures (Section 2). Second, after
reviewing some background material in Section 3, we describe the design and imple-
mentation of FatNemo, a new application-layer multicast protocol that builds on this
idea (Section 4). Lastly, we evaluate the FatNemo design in simulation, illustrating the
benefits of a fat tree approach compared to currently popular approaches to application-
layer multicast (Sections 5 and 6). We review some related work in Section 7 and present
our conclusion and directions of future work in Section 8.

2 Fat-Trees and the Overlay

The communication network of a parallel machine must support global collective com-
munication operations in which all processors participate [26]. These operations have a
wide range, including reduction and broadcast trees, and neighbor exchange. All-to-all
personalized communication [21], in which each processor sends a unique message to
every other processor, is key to many algorithms. To support such operations well, the
network should have (1) minimal and scalable diameter, and (2) maximal and scalable

1 Measurement studies of widely used application-layer/peer-to-peer systems have reported me-
dian session times ranging from an hour to a minute [7,20,34,12].

2 The access link of an end system becomes its bandwidth bottleneck, thus we can model the
bandwidth capacity as a property of the end-system.

184 S. Birrer et al.

A

E F

G

B DC

Bottleneck node

Cap. 30 Kbps

Cap. 20 Kbps

Cap. 25 KbpsCap. 5 Kbps

Cap. 10 Kbps

Cap. 5 KbpsCap. 5 Kbps

(a) Normal tree.

A

F

G

B DE

C

Cap. 30 Kbps

Cap. 20 Kbps

Cap. 5 KbpsCap. 5 Kbps Cap. 5 Kbps

Cap. 25 Kbps

Cap. 10 Kbps

(b) Fat-tree.

Fig. 1. Two binary trees with nodes A and B as sources, publishing at 5 Kbps each. On the left,
a normal binary tree where node E becomes the bottleneck, resulting on a reduced (dash line)
outgoing stream quality. Node E has to forward the stream A to node B and node G, as well
as stream B to node A and node G, thus it needs an outgoing bandwidth capacity of 20 Kbps.
However, it has only 10 Kbps available, making it a bottleneck in the tree. On the right, a fat-tree
with higher capacity nodes placed higher in the tree.

bisection bandwidth. These goals are very similar to those of a multisource multicast
overlay, which can be thought of as providing many-to-many personalized commu-
nication, a subset of all-to-all personalized communication. We expect a multisource
multicast overlay to have a latency between end-systems that grows only slowly or not
at all as the number of end-systems grows. Similarly, we expect the aggregate throughput
of the overlay to grow linearly as end-systems are added.

In his seminal work on fat-trees [27], Leiserson introduced a universal routing net-
work for interconnecting the processors of a parallel supercomputer, where communi-
cation can be scaled independently of the number of processors. Based on a complete
binary tree, a fat-tree consists of a set of processors, located at the leaves, and intercon-
nected by a number of switching nodes (internal to the tree) and edges. Each edge in
the tree corresponds to two unidirectional channels connecting a parent with each of its
children. Channel consist of a bundle of wires, and the number of wires in a channel is
called its capacity. The capacity of the channels of a fat-tree grows as one goes up the
tree from the leaves, thus allowing it to overcome the “root bottleneck” of a regular tree.
Since their introduction, fat-trees have been successfully applied in massively parallel
systems [28,22] as well as in high performance cluster computing [23].

In this paper we propose to organize the end-systems participant in a multicast group,
in an overlay tree that closely resembles a Leiserson fat-tree. In common with Leiserson,
our goal is to minimize the mean and standard deviation of inter-node communication
performance with multiple potential sources.

Emulating fat-trees in an overlay entails a number of challenges such as handling
the high level of transiency of end-system populations and addressing their degree of
heterogeneity. A straightforward way of approximating a fat-tree is placing those nodes

FatNemo: Building a Resilient Multi-source Multicast Fat-Tree 185

with higher bandwidth capacity3 closer to the root. Since interior nodes are involved
in most inter-node communication paths they strongly influence the overall end-to-end
delay and can soon become bottlenecks as one increases the number of sources. Figure 1
shows a schematic example of both a regular binary tree with two 5 Kbps sources (A and
B) and a bottleneck node (E) unable to keep up with the publishing rate of the nodes
downstream.

Available bandwidth can differ significantly from bandwidth capacity over time,
due typically to competing traffic, and any algorithm that attempts to emulate fat-trees
in an overlay needs to take account of such dynamism. Also, per-path characteristics
must be taken into consideration. Since end-to-end latency is an important factor in
the performance of interactive applications, the latency of each link in the overlay,
the processing time at each node, and the number of intermediate nodes should be
considered carefully. When selecting among possible parents, a closer node may be a
better candidate, if it is able to support the load, than an alternative node offering higher
available bandwidth. Finally, the mean time to failure of end-systems is significantly
lower than for routers, possibly resulting in long interruptions to the data stream as the
failure is discovered and the distribution tree repaired.

Although overlay fat-trees can be built above most tree-based multicast systems,
in this paper we consider their implementation using Nemo, a high-resilience, latency-
optimized overlay multicast protocol [5]. The following section provides some back-
ground material on overlay multicast in general and on the operational details of Nemo,
before describing the FatNemo design in Section 4.

3 Background

All peer-to-peer or application-layer multicast protocols organize the participating peers
into (1) a control topology for group membership related tasks, and (2) a delivery tree for
data forwarding. Available protocols can be classified according to the sequence adopted
for their construction [1,13]. In a tree-first approach [19,24,32], peers directly construct
the data delivery tree by selecting their parents from among known peers. Additional
links are later added to define, in combination with the data delivery tree, the control
topology. With a mesh-first approach [13,11], peers build a more densely connected
graph (mesh) over which (reverse) shortest path spanning trees, rooted at any peer, can
be constructed. Protocols adopting an implicit approach [2,10,33,39,35] create only a
control topology among the participant peers. Their data delivery topology is implicitly
determined by the defined set of packet-forwarding rules.

FatNemo builds on Nemo to emulate a fat-tree; thus, it inherits the latter’s high scal-
ability and resilience. In the following paragraphs, we provide a summarized description
of Nemo; for more complete details we direct the reader to our previous work [5].

Nemo

Nemo follows the implicit approach to building an overlay for multicasting. The set of
communication peers are organized into clusters based on network proximity, where

3 The maximum outgoing bandwidth that the node is capable of, the capacity of the IP link
attaching the node to the network.

186 S. Birrer et al.

Leader

Co−leader

Ordinary member

Fig. 2. Nemo’s logical organization. The shape illustrates only the role of a peer within a cluster:
a leader of a cluster at a given layer can act as leader, co-leader, or an ordinary member at the next
higher layer.

every peer is a member of a cluster at the lowest layer. Clusters vary in size between d
and 3d − 1, where d is a constant known as the degree. Each of these clusters selects
a leader that becomes a member of the immediately superior layer. In part to avoid the
dependency on a single node, every cluster leader recruits a number of co-leaders to form
a supporting crew. The process is repeated at each new layer, with all peers in a layer
being grouped into clusters, crew members selected, and leaders promoted to participate
in the next higher layer. Hence peers can lead more than one cluster in successive layers
of this logical hierarchy. Figure 2 illustrates the logical organization of Nemo.

A new peer joins the multicast group by querying a well-known special end-system,
the rendezvous point, for the identifier of the root node. Starting there and in an iterative
manner, the incoming peer continues: (i) requesting the list of members at the current
layer from the cluster’s leader, (ii) selecting from among them who to contact next based
on the result from a given cost function, and (iii) moving into the next layer. When the
new peer finds the leader with minimal cost at the bottom layer, it joins the associated
cluster.

Member peers can leave Nemo in a graceful manner (e.g. user disconnects) or in
an ungraceful manner (unannounced, e.g. when the end-system crashes). For graceful
departures, since a common member has no responsibilities towards other peers, it can
simply leave the group after informing its cluster’s leader. On the other hand, a leader
must first elect replacement leaders for all clusters it owns before it leaves the session.

To detect unannounced departures, Nemo relies on heartbeats exchanged among
the cluster’s peers. Unreported members are given a fixed time interval before being
considered dead, at which point a repair algorithm is initiated. If the failed peer happens
to be a leader, the tree itself must be fixed, the members of the victim’s cluster must elect
the replacement leader from among themselves.

To deal with dynamic changes in the underlying network, every peer periodically
checks the leaders of the next higher layers and switches clusters if another leader has a
lower cost (i.e. lower latency) than the current one. Additionally, in a continuous process
of refinement, every leader checks its highest owned cluster for better suited leaders and
transfers leadership if such a peer exists.

Nemo addresses the resilience issue of tree-based systems through the introduction of
co-leaders. Co-leaders improve the resilience of the multicast group by avoiding depen-

FatNemo: Building a Resilient Multi-source Multicast Fat-Tree 187

Fig. 3. FatNemo’s Topology. The figure illustrates how the tree gets fatter when moving toward
the root. This tree has a cluster degree of 2.

dencies on single nodes and providing alternative paths for data forwarding. In addition,
crew members share the load from message forwarding, thus improving scalability.

4 FatNemo Design

To build an overlay fat-tree, FatNemo relies on three heuristics: (1) higher bandwidth
degree nodes should be placed higher up in the tree, (2) all peers must serve as crew
members in order to maximize load balancing, and (3) the size of clusters should increase
exponentially as one ascends the tree. The following paragraphs provide the motivations
behind each of these heuristics.

The per-node bandwidth constraint is critical for bandwidth-demanding applications
and can be stated as the number of full-rate streams a peer is able to support, i.e. its out-
degree. By organizing peers based on their out-degrees [36,13], we intend to reduce
the bandwidth constraints of links higher up the tree. Since the process of estimating
available bandwidth is time consuming, peers initially join the tree based on proximity.
Once in the tree, every leader checks its highest owned cluster for better suited leaders
in terms of bandwidth availability, and transfers leadership if such a peer exists. This
process assures that high out-degree peers will gradually ascend to higher layers, thus
transforming the tree into a bandwidth optimized fat-tree.

In traditional fat-trees the number of wires increases as one ascends the tree. Con-
sidering an overlay unicast connection as a “wire”, the number of wires in FatNemo
increases together with the crew size as one moves toward the root – the maximum
possible number of wires is thus achieved by setting the crew size equal to the cluster
size. The size of a cluster at layer i in FatNemo varies between di and 2di + 2, and
grows exponentially (di = di+1

0) as we move up the layers. The 0-th layer contains the
leaf nodes and has a degree d0 of 3 (same as Nice and Nemo). The increased number
of wires helps avoid higher level links from becoming the bottleneck of the system, as
alternate paths share the load and reduce the forward responsibility of each peer.

188 S. Birrer et al.

Table 1. Cluster and Crew Size as a function of the cluster degree d, for a 20,000 peer population.
The variable x is a place holder for the cluster index starting at 0 for the lowest layer.

Protocol Cluster Size k(x) Crew Size c(x)
Nice d . . . 3d − 1 d = 3 : 3 . . . 8 1
Nemo d . . . 3d − 1 d = 3 : 3 . . . 8 3
FatNemo dx+1 . . . 2dx+1 + 2 d = 3, x = 1 : 9 . . . 20 k(x)

Beyond increasing the number of wires, large crew sizes also help reduce the depth
of a tree (when compared with its constant cluster-sizes equivalent). A smaller depths
means a lower total number of end-system hops, and should translate in a reduction on
the end-to-end delay.

Figure 3 illustrates how FatNemo constructs a fat-tree. In this simple example d0 = 2,
so clusters scale up by a factor of 2 as we ascend the tree. Notice that these links/wires
are indeed (di+1 . . . 2di+1 + 2) to (di . . . 2di + 2) relations, as every crew member of
the next higher layer will talk to the crew members of the immediately lower layer. For
clarity in the graph, this set of links is represented in the graph by di lines.

To better understand the positive effect of FatNemo’s heuristics, we show an instan-
tiation of them with a population of 20, 000 peers from a popular on-line game. 4

To begin, let’s generalize the concept of out-degree. The out-degree of a peer, dout,
is equivalent to the total forwarding responsibility of a node, and it can be stated as a
function of the number of layers L in which the node participates, the cluster size k(x)
and the crew size c(x) at layer x (Equation (1)). Table 1 illustrates the parameter values
for FatNemo and two alternative protocols.

dout =
L−1∑

x=0

k(x) − 1
c(x)

(1)

Now, to calculate the requirements for the root node, we must first estimate the
number of layers for a given protocol which is a function of the number of peers in a
cluster 5. Nice and Nemo have, in expectation, 5.5 nodes per cluster at every layer. Using
this value as an approximation for the cluster size, a traditional tree for this population
size will be about 7 layers in depth. FatNemo, on the other hand, has a variable expected
number of nodes per cluster, and its expected tree depth is 4 layers.

Based on the expected depth of the different trees for this example population, we
can now calculate the out-degree requirements on their root nodes. According to the
generalized out-degree equation introduced in the previous paragraph (Equation (1)),
Nice requires a root out-degree of 31.5, or almost three times more than what is needed
from a Nemo’s root (10.5) with a crew size of 3. In other words, the root of a traditional

4 The number corresponds to the active populations of players in hattrick.org, an online soccer
game.

5 The average number of peers in a cluster is equal to the mean cluster size, which can be computed
as the mean of the low and high cluster boundary.

FatNemo: Building a Resilient Multi-source Multicast Fat-Tree 189

tree for a 20,000 peer population must support 31.5 times the source rate to fulfill its
forwarding responsibility! By emulating a fat-tree in the overlay, FatNemo avoids this
“root bottleneck” requiring only a root with an out-degree of 3.7.

5 Evaluation

We analyze the performance of FatNemo through simulation and compare it to that
of three other protocols – Narada [14], Nice [2] and Nice-PRM [3]. We evaluate the
effectiveness of the alternative protocols in terms of performance improvements to the
application and protocol’s overhead, as captured by the following metrics:

Response Time: End-to-end delay (including retransmission time) from the source to the
receivers, as seen by the application. This includes path latencies along the overlay
hops, as well as queueing delay and processing overhead at peers along the path. A
lower mean response time indicates a higher system responsiveness, and a smaller
standard deviation implies better synchronization among the receivers.

Delivered Packets: Number of packets successfully delivered to all subscribers within a
fixed time window. It indirectly measures the protocol’s ability to avoid bottlenecks
in the delivery tree.

Delivery Ratio: Ratio of subscribers that have received a packet within a fixed time
window. Disabled receivers are not accounted for.

Duplicate Packets: Number of duplicate packets per sequence number, for all enabled
receivers, reflecting an unnecessary burden on the network. Packets arrived outside
of the delivery window are accounted for as duplicates, since the receiver already
assumed them as lost.

Control-Related Traffic: Total control traffic in the system, in mega bits per second
(Mbps); part of the system’s overhead. We measure the total traffic during the obser-
vation interval by accounting packets at the router level.A network packet traversing
four routers (including the source and destination node) will account as three sent
packets, one for every router which has to forward it.

The remainder of this section briefly discusses implementation details of the com-
pared protocols and describes our evaluation setup. Section 6 presents our evaluation
results.

5.1 Details on Protocol Implementations

For each of the three alternative protocols, the values for the available parameters were
obtained from the corresponding literature [13,2,3].

For Narada [13], we employ the bandwidth-only scheme for constructing the overlay,
as this will result in maximum throughput. For Nice [2] and Nice-PRM [3], the cluster
degree, k, is set to 3. We use Nice-PRM(3,0.02) with three random peers chosen by each
node, and with two percent forwarding probability.

For FatNemo, the cluster degree at the lowest layer is set to three. Cluster degree
grows exponentially with every layer, being nine in the second lowest layer, 27 in the
third, and so on.

190 S. Birrer et al.

Our implementations of the alternative protocols closely follow the descriptions from
the literature, and have been validated by contrasting our results with the published val-
ues. However, there are a number of improvements to the common algorithms, such as the
use of periodic probabilistic maintenance operations, that while part of FatNemo, were
made available to all protocols in our evaluations. The benefits from these algorithms
help explain the performance improvements of the different protocols with respect to
their original publications [13,2,3].

5.2 Experimental Setup

We performed our evaluations through detailed simulation using SPANS, a locally writ-
ten, packet-level, event-based simulator. Simulations were run using GridG [29,30]
topologies with 5510, 6312 and 8115 nodes, and a multicast group of 256 members.
GridG leverages Tiers [18,8] to generate a three-tier hierarchical network structure, be-
fore it applies a power law enforcing algorithm that retains the hierarchical structure.

Members were randomly associated with end systems, and a random delay of be-
tween 0.1 and 80 ms was assigned to every link. The links use drop-tail queues with a
buffer capacity of 0.5 sec. We configured GridG to use different bandwidth distributions
for different link types [25]. We assume that the core of the Internet has higher bandwidth
capacities than the edge, as shown in Fig. 4. In all three scenarios, the bandwidth has a
uniform distribution with ranges shown in Fig. 4.

Scenario Routers End systems Links Client-Stub Stub-Stub Transit-Stub Transit-Transit
Low-B/W 510 5000 11240 400-6000 3000-8000 4000-10000 10000-20000

Medium-B/W 312 6000 12730 800-8000 4000-10000 6000-15000 15000-30000
High-B/W 615 7500 16450 1000-15000 10000-30000 10000-50000 50000-100000

Fig. 4. Three simulation scenarios: Low-, Medium- and High-Bandwidth. Bandwidth is expressed
in Kbps.

Each simulation experiment lasted for 500 sec. (simulation time). All peers join the
multicast group by contacting the rendezvous point at uniformly distributed, random
times within the first 100 sec. of the simulation. A warm-up time of 200 sec. is omitted
from the figures. Publishers join the network and start publishing at the beginning of the
simulation. Starting at 200 sec. and lasting for about 300 sec., each simulation has a phase
with membership changes. We exercise each protocol with and without host failures
during this phase. Failure rates are set based on those obtained from a published report
of field failures for networked systems [37]. Nodes fail independently at a time sampled
from an exponential distribution (with mean time to failure (MTTF) equal to 60 min.)
and rejoin shortly after (time sampled from an exponential distribution with mean time to
repair (MTTR) equal to 10 min.). The two means were chosen asymmetrically to allow,
on average, 6/7 of all members to be up during this phase. The failure event sequence
was generated a priori based on the above distribution and used for all protocols and all
runs.

FatNemo: Building a Resilient Multi-source Multicast Fat-Tree 191

1 2 3 4 5 6 7 8
Publishers

1 M

2 M

3 M

4 M

5 M

6 M

7 M

D
el

iv
er

ed
 P

ac
ke

ts

FatNemo
Nice
Nice PRM(3,0.02)
Narada
infinite bandwidth case

Fig. 5. Delivered packets (256 end hosts, Low-Bandwidth scenario).

In all experiments, we model multi-source multicast streams to a group. Each source
sends constant bit rate (CBR) traffic of 1000 Byte payload at a rate of 10 packets per
second. The buffer size was set to 16 packets, which corresponds to the usage of a
1.6-second buffer, a realistic scenario for applications such as video conferencing.

6 Experimental Results

This section presents early evaluation results of FatNemo and compares them with those
of three alternative protocols.The reported results are from five runs per protocol obtained
with the different GridG topologies and the Low-Bandwidth scenario. Similar results
were obtained with the Mid- and High-Bandwidth scenarios.

Figure 5 shows the average number of delivered packets of all runs with no host
failures. As we increase the number of publishers, the protocol’s data delivery topology
collapses. This happens first for Narada, which is unable to handle the full publishing
rate from one publisher. Nice and Nice PRM handle an increasing number of publishers
better; however, they deliver substantially fewer packets when compared with FatNemo.
FatNemo is best at avoiding bottlenecks in the delivery tree, delivering the most packets
when the network is overloaded (as seen with 8 publishers).

The performance of a multi-source multicast system can be measured in terms of
mean and standard deviation of the response time. Table 2 shows these two metrics for
the evaluated protocols with one publisher. FatNemo outperforms Nice, Nice PRM and
Narada in terms of mean and standard deviation of response time. With an increased
number of publishers the relative number of delivered packets for Nice, Nice PRM and
Narada decreases compared to FatNemo, which makes it impossible to fairly compare
the response time for more than one publisher based only on one number. The problem
stems from that fact that, when lowering its delivery ratio a protocol will drop those

192 S. Birrer et al.

Table 2. Response Time (1 Publisher, 256 end hosts, Low-Bandwidth scenario).

Protocol Mean Std
FatNemo 0.158 0.073
Nice 0.183 0.082
Nice-PRM(3,0.02) 0.195 0.086
Narada 0.770 0.464

0.01 0.1 1 10
Response Time [s]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
[t<

X
]

(a) 1 Publisher

0.01 0.1 1 10
Response Time [s]

(b) 4 Publisher

0.01 0.1 1 10
Response Time [s]

FatNemo
Nice
Nice PRM(3,0.02)
Narada

(c) 8 Publisher

Fig. 6. Response Time CDF with 1, 4 and 8 publishers (256 end hosts, Low-Bandwidth scenario).

packets with high response time more likely than others. Thus, comparing response
times across protocols with significantly different delivery ratios under stress will give
less resilient protocols an unfair advantage.

Figure 6.(a) shows the Cumulative Distribution Function (CDF) of the response time
per packet for one publisher. The y-axis is normalized to the infinite bandwidth case, i.e.
when all receivers receive all possible packets. FatNemo, Nice and Nice PRM perform
well, but FatNemo’s flatter tree results in an improved response time. Narada is only
able to deliver a fraction of all possible packets, and only then with a substantially high
delay. With increasing number of publishers, the protocols start running into bottlenecks.
Despite the harder conditions, FatNemo is able to outperforms the alternative protocols
in terms of packet delivery times as illustrated in Fig. 6.(b) and Fig. 6.(c).

Table 3 shows the delivery ratio using one publisher with and without end-systems
failures. We see that FatNemo performs as well as Nice PRM under a low-failure rate
scenario with only a drop of 2.1% in delivery ratio. Nice has a slightly lower delivery

Table 3. Delivery Ratio (1 Publisher, 256 end hosts, Low-Bandwidth scenario).

Protocol No Failures With Failures
FatNemo 0.987 0.966
Nice 0.973 0.956
Nice-PRM(3,0.02) 0.989 0.970
Narada 0.685 0.648

FatNemo: Building a Resilient Multi-source Multicast Fat-Tree 193

Table 4. Overhead (1 Publisher, 256 end hosts, Low-Bandwidth scenario).

Protocol Duplicate packets Control Traffic [Mbps]
FatNemo 0.367 17.99
Nice 0.000 9.211
Nice-PRM(3,0.02) 5.168 11.48
Narada 0.006 157.3

ratio, while Narada suffers already from a collapsed delivery tree with only about 70%
delivery ratio. In general, the delivery ratio will decrease as the number of publishers
increases, as the protocol’s data delivery topology slowly collapses.

The overhead of a protocol can be measured in terms of duplicate packets. We show
this metric in the second column of Table 4. Despite its high delivery ratio, FatNemo
incurs, in average, only 0.367 duplicate packets per sequence number, while Nice-PRM
suffers from 5.168 duplicate packets per sequence number generated by its probabilistic
forwarding algorithm. Nice and Narada feature almost no duplicates, but at a high cost
in term of delivery ratio as shown in Table 3. FatNemo’s control related traffic is higher
than for Nice and Nice-PRM, a result of its larger cluster cardinality higher in the tree.
The control traffic is accounted for at router level, thus the choice of a peer’s neighbors
in FatNemo also adds additional overhead, as it opts not for the closest, but for the peer
with highest bandwidth.

7 Related Work

Numerous protocols have been proposed to address the demand for live streaming appli-
cations. One of the first end-system multicast protocol was Narada [13], a multisource
multicast system designed for small to medium sized multicast groups. Peers in Narada
are organized into a mesh with fixed out-degree, with every peer monitoring all others to
detect end-system failures and network partitions. The per-source multicast tree is built
on top of this mesh from the reverse shortest path between each recipient and the source.
Since the tree construction algorithm does not account for cross traffic, a powerful link
is likely to be used by many multicast links, limiting the efficiency of the multicast
system. FatNemo uses crew members to share the forwarding load, thus relaxing the
burden on a single high bandwidth path. Overcast [24] organizes dedicated servers in
a single-source, bandwidth optimized, multicast tree. In contrast, FatNemo is an end-
system overlay that constructs a global optimized fat-tree for multisource multicasting.
Banerjee et al. [2] introduce Nice and demonstrate the effectiveness of overlay multicast
across large scale networks. The authors also present the first look at the robustness
of alternative overlay multicast protocols under group membership changes. FatNemo
adopts the same implicit approach, and its design draws on a number of ideas from Nice
such as its hierarchical control topology. FatNemo introduces co-leaders to improve the
resilience of the overlay and adopts a periodic probabilistic approach to reduce/avoid
the cost of membership operations.

194 S. Birrer et al.

A new set of projects have started to address the resilience of overlay multicast
protocols [3,9,35,5,31,38]. ZigZag [35], a single-source protocol, explores the idea of
splitting the control and data delivery task between two peers in each level, making both
responsible for repairs under failures. With PRM [3] Banerjee et al. propose the use of
probabilistic forwarding and NACK-based retransmission to improve resilience. In order
to reduce the time-to-repair, Yang and Fei [38] argue for proactively, ahead of failures,
selecting parent replacements. CoopNet [31] improves resilience by building several
disjoint trees on a centralized organization protocol and employing Multiple Description
Coding (MDC) for data redundancy. Nemo [5] and FatNemo build redundancy into the
overlay through co-leaders; different from the previously described protocols, they make
all crew members share forwarding responsibilities while all cluster members are in
charge of repair operations. These simple measures enable an uninterrupted service to
downstream peers especially during recovery intervals. We are currently exploring the
use of data redundancy using forward error correction (FEC) encoding [6].

Aiming at bulk data distribution, protocols such as Splitstream [9] , Bittorrent [15]
and Bullet [25] have proposed simultaneous data streaming over different paths to better
share the forwarding load and increased downloading capacity. The methods differ in
how they locate alternate streaming peers. In comparison, FatNemo exploits alternate
paths for resilience and load balancing.

8 Conclusions and Further Work

In this paper we introduced the parallel architecture concept of fat trees to overlay
multicast protocols. We have described FatNemo, a novel scalable peer-to-peer multicast
protocol that incorporates this idea to build data delivery topologies with minimized mean
and standard deviation of the response time. Simulation results show that FatNemo can
achieve significantly higher delivery ratios than alternative protocols (an increase of up to
360% under high load), while reducing the mean (by up to 80%) and standard deviation
(by up to 84%) of the response time in the non-overloaded case. Under a heavy load and
a realistic host failure rate, the resulting protocol is able to attain high delivery ratios
with negligible cost in terms of control-related traffic. We are currently validating our
findings through wide-area experimentation.

Acknowledgments. We are grateful to Janine M. Casler, Kevin Livingston and Ananth
Sundararaj for their helpful comments on early drafts of this paper.

References

1. S. Banerjee and B. Bhattacharjee. A comparative study of application layer multicast proto-
cols, 2002. Submitted for review.

2. S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer multicast. In
Proc. of ACM SIGCOMM, August 2002.

3. S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Resilient multicast using overlays.
In Proc. of ACM SIGMETRICS, June 2003.

FatNemo: Building a Resilient Multi-source Multicast Fat-Tree 195

4. M. Bawa, H. Deshpande, and H. Garcia-Molina. Transience of peers & streaming media. In
Proc. of HotNets-I, October 2002.

5. S. Birrer and F. E. Bustamante. Nemo - resilient peer-to-peer multicast without the cost. Tech.
Report NWU-CS-04-36, Northwestern U., April 2004.

6. R. E. Blahut. Theory and Practice of Error Control Codes. Addison Wesley, 1994.
7. F. E. Bustamante andY. Qiao. Friendships that last: Peer lifespan and its role in P2P protocols.

In Proc. of IWCW, October 2003.
8. K. L. Calvert, M. B. Doar, and E. W. Zegura. Modeling internet topology. IEEE Communi-

cations Magazine, 35(6):160–163, June 1997.
9. M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Splitstream:

High-bandwidth multicast in cooperative environments. In Proc. of the 19th ACM SOSP,
October 2003.

10. M. Castro, A. Rowstron, A.-M. Kermarrec, and P. Druschel. SCRIBE: A large-scale and
decentralised application-level multicast infrastructure. IEEE Journal on Selected Areas in
Communication, 20(8), 2002.

11. Y. Chawathe. Scattercast: an architecture for Internet broadcast distribution as an infras-
tructure service. Ph.D. Thesis, U. of California, Berkeley, CA, Fall 2000.

12. Y.-H. Chu, A. Ganjam, T. S. E. Ng, S. G. Rao, K. Sripanidkulchai, J. Zhan, and H. Zhang.
Early experience with an Internet broadcast system based on overlay multicast. In Proc. of
USENIX ATC, June 2004.

13. Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for end system multicast. IEEE
Journal on Selected Areas in Communication, 20(8), October 2002.

14. Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system multicast. In Proc. of ACM
SIGMETRICS, June 2000.

15. B. Cohen. BitTorrent. bitconjurer.org/BitTorrent/, 2001. File distribution.
16. S. E. Deering. Multicast routing in internetworks and extended LANs. In Proc. of ACM

SIGCOMM, August 1988.
17. C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen. Deployment issues for the

IP multicast service and architecture. IEEE Network, 14(1), January/February 2000.
18. M. B. Doar. A better model for generating test networks. In Proc. of Globecom, November

1996.
19. P. Francis. Yoid: Extending the Internet multicast architecture. http://www.aciri.org/yoid,

April 2000.
20. K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan. Measure-

ment, modeling and analysis of a peer-to-peer file-sharing workload. In Proc. of ACM SOSP,
December 2003.

21. S. Hinrichs, C. Kosak, D. O’Hallaron, T. Stricker, and R. Take. An architecture for optimimal
all-to-all personalized communication. In Proceedings of the 6th ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 310–319, 1994.

22. M. Homewood and M. McLaren. Meiko CS-2 interconnect elan – elite design. In IEEE Hot
Interconnects Symposium, August 1993.

23. InfiniBand Trade Association. Infiniband architecture specification (1.0.a).
www.infinibandta.com, June 2001.

24. J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O’Toole Jr. Overcast:
Reliable multicasting with and overlay network. In Proc. of the 4th USENIX OSDI, October
2000.

25. D. Kostić, A. R. adn Jeannie Albrecht, and A. Vahdat. Bullet: High bandwidth data dissemi-
nation using an overlay mesh. In Proc. of the 19th ACM SOSP, October 2003.

26. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes. Morgan Kaufmann, 1992.

196 S. Birrer et al.

27. C. E. Leiserson. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE
Transactions on Computers, 34(10):892–901, October 1985.

28. C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi, J. V.
Hill, W. D. Hillis, B. C. Kuszmaul, M. A. S. Pierre, D. S. Wells, M. C. Wong-Chan, S.-W.
Yang, and R. Zak. The network architecture of the Connection Machine CM-5. Journal of
Parallel and Distributed Computing, 33(2):145–158, 1996.

29. D. Lu and P. A. Dinda. GridG: Generating realistic computational grids. ACM Sigmetrics
Performance Evaluation Review, 30(4):33–41, March 2003.

30. D. Lu and P. A. Dinda. Synthesizing realistic computational grids. In Proc. of SC2003,
November 2003.

31. V. N. Padmanabhan, H. J. Wang, and P. A. Chou. Resilient peer-to-peer streaming. In Proc.
of IEEE ICNP, 2003.

32. D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An application level multicast
infrastructure. In Proc. of USENIX USITS, March 2001.

33. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast using content-
addressable networks. In Proc. of NGC, November 2001.

34. S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT. In Proc. of
USENIX ATC, December 2004.

35. D. A. Tran, K. A. Hua, and T. Do. ZIGZAG: An efficient peer-to-peer scheme for media
streaming. In Proc. of IEEE INFOCOM, April 2003.

36. Z. Wang and J. Crowcroft. Bandwidth-delay based routing algorithms. In Proc. of IEEE
GlobeCom, November 1995.

37. J. Xu, Z. Kalbarczyk, and R. K. Iyer. Networked Windows NT system field failure data
analysis. In Proc. of PRDC, December 1999.

38. M. Yang and Z. Fei. A proactive approach to reconstructing overlay multicast trees. In Proc.
of IEEE INFOCOM, March 2004.

39. S. Q. Zhuang, B.Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz. Bayeux: An archi-
tecture for scalable and fault-tolerant wide-area data dissemination. In Proc. of NOSSDAV,
June 2001.

	Introduction
	Fat-Trees and the Overlay
	Background
	FatNemo Design
	Evaluation
	Details on Protocol Implementations
	Experimental Setup

	Experimental Results
	Related Work
	Conclusions and Further Work

