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ABSTRACT

The impressive growth of the mobile Internet has motivated several
industry reports retelling the story in terms of number of devices
or subscriptions sold per regions, or the increase in mobile traffic,
both WiFi and cellular. Yet, despite the abundance of such reports,
we still lack an understanding of the impact of cellular networks
around the world.

We present the first comprehensive analysis of global cellular
networks. We describe an approach to accurately identify cellu-
lar network IP addresses using the Network Information API, a
non-standard Javascript API in several mobile browsers, and show
its effectiveness in a range cellular network configurations. We
combine this approach with the vantage point of one of the world’s
largest CDNs, with servers located in 1,450 networks and clients dis-
tributed across across 245 countries, to characterize cellular access
around the globe.

We find that the majority of cellular networks exist as mixed
networks (i.e., networks that share both fixed-line and cellular de-
vices), requiring prefix — not ASN - level identification. We discover
over 350 thousand /24 and 23 thousand /48 cellular IPv4 and IPv6
prefixes respectively. By utilizing addresses level traffic from the
same CDN, we calculate the fraction of traffic coming from cellular
addresses. Overall we find that cellular traffic comprises 16.2% of
the CDN’s global traffic, and that cellular traffic ranges widely in
importance between countries, from capturing nearly 96% of all
traffic in Ghana to just 12.1% in France.
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1 INTRODUCTION

The tremendous growth of the mobile Internet, with over 11 billion
devices connected by 2020 [8], and its economic implications have
motivated several reports retelling the story in terms of number
of devices sold, 3G/4G subscriptions per regions or the increase
in mobile traffic (both WiFi and cellular) based on survey-based
estimations [5, 6, 10, 18]. And yet, despite the abundance of these
reports, we lack an understanding of the impact of cellular networks
around the world.

There are a number of reasons for this. For one, it is currently
challenging to tell whether a particular IP address comes from a
cellular or fixed-line user. In much of the world, cellular users reside
in networks that combine both cellular and fixed-line customers,
complicating any straightforward attempt at identification. Know-
ing a device type (e.g., smartphone or tablet) has limited value as
most mobile devices have multiple interfaces and users tend to
offload cellular traffic to WiFi when available. And while instru-
mented devices or data collected from a network operator’s core
could provide detailed information on cell network usage, scaling
this sort of studies have proven to be difficult [24, 27].

A comprehensive understanding of cellular access has a wide
range of applications for different stakeholders in the Internet. For
content providers and delivery networks, identifying access tech-
nology would help diagnosing and addressing performance issues
in the wild. Researchers and operators could better understand how
networks are being used around the world and identify potential
trends, while policy makers could have a firmer statistical footing
for investment decisions.

In this paper we tackle a straightforward yet challenging prob-
lem: “Can we estimate the relative importance of cellular networks
around the world?” We make two key contributions. First, we de-
scribe an approach to accurately identify cellular network addresses
using client browser signals and show its effectiveness in a range
of mixed networks (i.e., networks which share both fixed line and
cellular devices). Using this approach, we leverage the global van-
tage point of one of the world’s largest CDNs to map global cellular
IP space and its housing ASes. Our second main contribution is a
first-of-its-kind study characterizing cellular network configuration
and usage around the world.

A summary of our key findings includes:

e We identify 350 thousand cellular /24 IPv4 subnets, and 23
thousand /48 IPv6 subnets worldwide, and that these com-
prise 7.3% and 1.2% of active IP address space respectively.

e We identify 668 cellular ASes, and show that a majority
(58.6%) of cellular access networks are “mixed networks”,
housing both cellular and fixed-line broadband customers in
the same AS.
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Source Granularity Global Comp. Cellular
Industry Reports
Ericsson [10] Continent v v
Cisco [8] Continent v v
Sandvine [34, 35] Continent v X
Akamai SoTI [5] Country v X
OpenSignal [26] Country v X
Academic Research
Flow Analysis [41] Operator X X
Instr. Handsets [12, 13] Handset X X
Our Approach IP-Level v v

Table 1: Comparison between existing analysis of cellular
network usage and behavior.

o We find a high concentration of traffic in a very small fraction
of cellular subnets. In a large European operator, 24 out of
514 — thats 4.6% — active cellular /24s account for 99.5% of
cellular demand.

e We find that cellular traffic represents 16.2% of all global
traffic in December 2016. We show that the fraction of traffic
traversing cellular links varies widely across countries and
continents. For example, while only 16.6% of U.S. traffic is
cellular, cellular composes 63% of all traffic in Indonesia and
95.9% of all traffic in Ghana.

e We find that with a few exceptions — namely the U.S. and
India - that IPv6 is not widely deployed across global cellular
networks. We found only 1.2% of all active IPv6 /48 subnets
are cellular, and are found in only 52 of the 668 (7.7%) cellular
ASes.

In the following section we expand on our motivation and de-
scribe current approaches for studying and characterizing mobile
Internet trends. After describing our datasets (§ 3), we present our
method for cellular address identification, and report on its vali-
dation and early results in Section 4. We present an approach that
builds on these ideas for detecting cellular access networks (§ 5) and
apply it to analyze some key features of different cellular networks
(§ 6). We discuss some of the observed global trends in Section 7)
and close with a summary of our findings and some of its impli-
cations. We conclude in Section 8 with some final thoughts and
future research directions.

2 BACKGROUND & MOTIVATION

Cellular access technology continues to improve at rapid pace, with
existing LTE deployments capable of supporting data rates up to 100
Mbps. The next generation of wireless technology - 5G - is expected
to support data rates up to 1Gbps [22]. The improved performance
and the proliferation of advanced wireless technologies are driving
exponential growth on cellular traffic.

Given its increasing importance, all Internet stakeholders - from
users and content providers to content delivery networks, opera-
tors, researchers and policy makers — could benefit from a compre-
hensive understanding of cellular access. Content providers and
delivery networks, could better diagnose and address performance
issues in the wild. Researchers and operators could better under-
stand how networks are being used around the world and identify
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potential trends, while policy makers could have a firmer statistical
footing for investment decisions.

Distinguishing cellular traffic within more general traffic by mo-
bile devices is a challenging problem. “Mobile” devices describe
a property of the device itself, typically a smartphone or tablet,
whereas a “mobile” connection describes the type of access con-
nection. We refer to mobile connections strictly as connections
traversing cellular access technologies, and focus on the scope and
deployment of cellular connectivity.

2.1 Related Work

Information about cellular networks comes from two main sources:
academic research and industry reports. Prior academic work on
cellular network characterization has typically followed one of
two models, either relatively small detailed studies involving in-
strumented handsets or flow-level analysis from a single mobile
operator. Industry reports present high-level analysis and global
trends of the current and future Internet, sacrificing specificity for
global coverage.

These prior approaches make trade-offs between the coverage of
their results and the level of detail of their findings - from “broad
and coarse” views found in most industry reports to “narrow and
detailed” perspectives collected from instrumented devices. Table 1
presents a summary of these trade-offs within prior work, com-
paring existing approaches across the granularity of their results,
whether they provide a global view, and if they provide a compara-
tive view of cellular and fixed-line traffic.

Instrumented handsets provide the highest level of detail, and
today are the only way to obtain all of a device’s context, includ-
ing location and radio conditions. This approach has been used to
explore cellular network infrastructure [33, 38, 40], measure perfor-
mance [16, 23, 36], and understand mobile device behavior [12, 13].
While detailed in their measurements, these approaches’ typically
limited coverage hampers their ability to observe global trends on
global cellular connectivity.

Flow-level analysis from cellular operators allow for more gen-
eral statements on cellular network behavior since they typically
cover orders of magnitude more users over continuous time spans.
Several efforts have explored the traffic patterns of cellular net-
works using this approach, including Shafiq et al. [37] and Zhang
et al. [41]. Other work has looked at more specific phenomena,
including the dominant share of video in mobile networks [11], or
the impact of caching on mobile devices [31]. While providing a
in-depth view of a given network, such studies capture only the
perspective of a single operators. As we later show (§6) cellular
networks vary greatly in their size and configuration.

Often quoted industry reports on the state of the current and
future of the Internet, such as Cisco VNI report [8], the Sandvine
Global Internet Phenomena Report [34, 35], and Akamai State of
the Internet Report [5], now include a mobile component, while
some more recent survey focus exclusively on mobile networks (e.g..
Ericsson Mobility Report [10] and OpenSignal’s State of Mobile
Networks [26]. The majority of these reports rely on proprietary
company data and survey data from other sources to explore trends
and draw estimations on number of devices, subscriptions or mobile
traffic.
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Source Period /24 /48
BEACON  Dec. 2016 (monthly) 47M  1.8M

DEMAND  Dec 24-31 2016 (week snapshot) 6.8M 909K

Table 2: CDN’s datasets used for cellular address analysis.
The BEACON dataset includes 4.7M /24 blocks and1.8M /48
blocks; the DEMAND dataset includes 6.8M /24 blocks and
909K /48 blocks.

Each of these industry reports attempts to capture the global
state of mobile networks, but does so across different axes and gran-
ularities of coverage. The Sandvine reports [34, 35], for instance,
presents comparisons between mobile and fixed-line access at the
application level, but does not compare the magnitude of traffic
between these two access types. Others capture only performance
characteristics of mobile networks, such as the Akamai [5] and
OpenSignal [26] reports. Only the Cisco [8] and Ericsson [10] re-
ports provide information which compares the relative impact of
cellular networks on overall Internet traffic, yet, even in these cases
only offers a comparison of global aggregates. As we show later in
Section 7, the variability of cellular usage varies widely across con-
tinents, countries, and even ASes, requiring finer grained analysis
for true understanding.

Despite these numerous reports, we are still left without a com-
prehensive understanding of the impact and magnitude of cellular
access networks around the globe. Our approach allows the explo-
ration of large-scale trends across operators and regions, while also
providing with information at an IP level of detail. Unlike most
industry reports which are irreproducible, and based on propri-
etary data, our approach is easily replicated by individual network
services for analysis across their own clients.

3 DATASET

We leverage the vantage point of one of the largest worldwide
CDNs, which receives trillions of requests per day. In particular, we
rely on two different information sources from the CDN’s monitor-
ing platform: real-user-monitoring beacons (BEACON) and overall
platform demand measurements (DEMAND). These sources com-
bine the view from over 200,000 vantage points distributed around
the world, and includes data from over 46,000 autonomous sys-
tems across 245 countries. Table 2 summarizes key aspects of the
datasets.

3.1 BEACON dataset

Our BEACON dataset is derived from logs from Javascript beacons,
part of the CDN’s Real-User Monitoring system (RUM), and con-
tains information such as the timing and page load information
obtained from browser instrumentation (e.g. the Resource Timing
API [3]), client information including IP address, and data collected
by the Network Information API, which we describe in detail be-
low. We utilize logs collected over a one month period between
December 1, 2016 and December 31, 2016.

Beacons are sourced from page loads of CDN customers that
have opted-into this RUM system. This limits the visibility of the
beacons to clients of participating customers. Additionally, while
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Figure 1: Stacked line graph of the percentage of BEACON
hits enabled with the Network Information API. The major-
ity of enabled API hits come from Chrome Mobile and the
native Android Webkit browser.

CDNs see a wide variety of HTTP traffic for things such as images,
API calls and video streaming, the beacons only capture web page
loads. Within this participating customer set, beacons are further
sampled from a random subset of all page load requests.

The Network Information API. The Network Information
API 2] allows web applications to access information about the
underlying network connection in use by the device. While not a
W3C standard, the Network Information API is implemented in
several popular mobile browsers, most notably Android’s native
WebKit, Chrome for Android beginning in version 38, ! and Firefox
Mobile.

The API reveals the connection type that the system is using to
communicate with the network (e.g., cellular, Bluetooth, Ethernet,
WiFi) and supports monitoring network changes. Connectivity is
obtained from the browser, which calls the underlying operating
system to obtain information on active network interfaces, or to
detect changes in network connectivity.

While we have high confidence in the accuracy of Network In-
formation API data (§4), there are issues that arise from classifying
access technology type from end-host devices. We discovered two
types of issues which lead to inaccurate associations between IP
address and connection type. The first and most prevalent is from
tethering or mobile hotspot usage. The Network Information API
is limited to the device’s point of view. Thus, a device that is con-
nected through an intermediate technology, for instance a laptop
connected to WiFi through a mobile hotspot — would only report its
WiFi network link despite the traffic traversing a cellular network.
In another rarer case, there is a possibility that network interfaces
could change between when the client’s IP address was recorded,
and when the Network Information API was polled. In the ver-
sion of the beacon used in our experiments, client IP addresses
were recorded prior to Network Information API invocation, which
could lead to this case if a client originally connected to the page
over WiFi, and then changed to cellular when the Network Infor-
mation API was invoked. While it would be possible to monitor

!Released on Oct. 8 2014 https://chromereleases.googleblog.com/2014/10/
chrome-for-android-update.html
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network connectivity changes through the Network Information
API to prevent this, the beacon used did not possess this capability.
These inaccuracies result in a certain level of noise in the Network
Information API’s responses, making it unlikely that any heavily
trafficked cellular subnet would have a 100% cellular labels. We
validate the accuracy of the Network Information API labels in the
following section.

Despite its absence in several popular mobile browsers — most
notably iOS at the time of our collection — we observe substantial
Network Information API traffic in our BEACON dataset. Figure 1
shows the prevalence of Network Information API from our RUM
system between September 2015 and June 2017. While at the time
of our measurements, the Network Information API was included
in 13.2% of beacon requests, that still represents several hundreds
of millions of hits. In June 2017, we observe 15% of all BEACON hits
to have functional Network Information API data. The figure also
shows that the vast majority of Network Information is obtained
from Chrome Mobile and Android Webkit browsers, followed by
Chrome and Firefox Mobile. Google is heavily driving Network
Information API adoption, with 96.7% of enabled requests coming
from Google developed browsers in December 2016.

We recognize that our BEACON dataset is biased by the CDN’s
clientele, as well as the opt-in nature of its RUM system. Regardless
of overall biases, we believe our detection methodology is unaf-
fected, since it is relies on the ratio of detected access technology
types within individual subnets. We therefore use our BEACON
dataset only for network connectivity identification, determining
whether an IP subnet represents clients connected over cellular
or fixed-line access links, and augment our analysis with separate
measurements capturing all CDN platform demand, across all cus-
tomers and clients. We describe this additional dataset in detail in
the following section.

3.2 DEMAND dataset

We leverage requests logs from the same CDN to generate a compre-
hensive view of request demand for the entire CDN platform across
the global IP space. Using a seven-day period between December
24 and December 31 2016, we develop a platform demand weight
for all /24 and /48 subnets which have interacted with the CDN.

Unlike the Javascript beacons which represent a sample of web-
page views, these logs accumulate all requests across the CDN’s
entire platform, covering all types of protocols and devices. To gen-
erate this, all daily request statistics are aggregated by /24 subnets
for IPv4 and /48 subnets for IPv6. These request statistics are then
combined with results from the previous 7 days to smooth out any
daily demand variations. Finally, these results are normalized across
the platform into unit-less Demand Units (DU). Demand Units are
normalized out of 100,000, 2 with each DU representing 0.001% of
global request demand (i.e. 1,000DU = 1%). These demand records
provide a much richer coverage of network demand than the BEA-
CON dataset, and provide context to our results. While a growing
fraction of Internet demand is non-web related, much of it con-
tinues to operate over HTTP such as video streaming and mobile
application traffic.

2100,000 is used to increase precision throughout our analysis
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We use demand at this CDN as a proxy for overall traffic demand
and acknowledge that this may bias our analysis to areas covered
by this particular service. We have, however, no clear way of estab-
lishing baselines for mobile traffic usage or assessing sampling bias
other than appealing to statistics on the world-wide deployment
of the CDN’s infrastructure (200,000 servers in 1,450 networks)
and the swath of the Internet our requests originate from (46,936
networks in 241 countries).

Compared to the DEMAND dataset, the BEACON dataset cap-
tures only 73% of the blocks observed on the entire platform (4.7M
out of the 6.4M /24 subnets). The BEACON collection is limited
to web page loads, and requires a web browser with Javascript
enabled to successfully report data, restrictions that do not apply to
the DEMAND dataset collection. When weighting subnets by their
respective demand, the BEACON dataset captures 92% of platform
requests.

4 CELLULAR SUBNET IDENTIFICATION

In this section we outline our method for cellular subnet identifica-
tion. The goal is to detect subnets assigned to cellular connection
(instead of other type of mobile connections) across the global IP
space. We define a cellular connection as one traversing a cellu-
lar radio on its path. We then present results from applying this
method to our datasets, and report on our validation with ground
truth information from three large mobile operators.

4.1 Methodology

Our methodology for classifying subnets as either cellular/non-
cellular is straightforward. We use the Network Information API
to detect the presence of cellular access technology in a particular
IP address block. We compute the ratio of cellular hits for a given
subnet, and utilize this ratio to classify each subnet as cellular/non-
cellular (i.e., fixed-line). The following paragraphs provide addi-
tional details on each of these steps.

To detect the presence of cellular access technology in a par-
ticular IP address block we use the ConnectionType reported by
the Network Information API. ConnectionType is defined as an
enumeration that includes: Bluetooth, cellular, Ethernet, WiFi and
WiMAX 3

Using this connectivity information, we label every hit in our
BEACON dataset which contains Network Information information
as either cellular or non-cellular, and use this to calculate a
cellular ratio for every /24 and /48 CIDR sampled. This ratio rep-
resents the fraction of a given subnet that comes from cellular
hits over the total number of Network Interface enabled hits for
that subnet. We label a particular subnet as cellular or non-cellular
based on this ratio.

Figure 2 plots the distribution of these cellular ratios across global
IP space. The figure shows the cumulative distribution of cellular
ratios for all active /24 and /48 subnets, as well as the distribution
of cellular ratios weighted by these subnets’ traffic demand. We
find that most addresses fall into two categories: very low cellular
(ratio < 0.1) or highly cellular (ratio > 0.9). The figure shows that
91.3% of /24 subnets and 98.7% of /48 subnets in our dataset have a

30ther than WiFi and cellular, all other connection types are rare as the majority of
Network Interface enabled browsers operate on mobile devices.
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Figure 2: Distribution of calculated cellular ratios for all
IPv4 and IPv6 subnets in our BEACON dataset, as well as the
traffic demand for these subnets from our DEMAND dataset.

cellular ratio of less than 0.1, and 5.8% of /24 and 1.2% of /48 subnets
have a cellular ratio greater than 0.9. The remaining subnets in the
range between 0.1 and 0.9 account for 2.9% and 0.1% of /24 and /48
subnets, respectively.

In cases of subnets with intermediate cellular ratios, between
0.1 and 0.9, we have to label them as either cellular or non-cellular
assuming access link homogeneity in these aggregates. It is unlikely
that ISPs would allocate subnets smaller than /24 and /48 to cellu-
lar infrastructure and, indeed, recent studies have found IPv4 /24
subnets to be homogeneous in 90% of cases with respect to last hop
routers [19]. We also assume IPv6 /48 subnets to be homogeneous,
in light of relative abundance and more recent assignment.

For each subnet in our dataset, we assign a demand value based
from the corresponding subnet in our DEMAND dataset. Remember
that this dataset accumulates all requests across the CDN’s entire
platform, normalized into unit-less Demand Units where each units
represents 0.001% of global request demand. Looking at demand,
we see similar patterns, with the vast majority of subnet traffic
residing on either end of the cellular ratio scale. Again, the majority
of all traffic demand is contained within subnets with a cellular
ratio less than 0.1, making up 80% of IPv4 demand and 98.7% of
IPv6 demand. Subnets with cellular ratio greater than 0.9 account
for 13.1% of IPv4 demand, and 6.4% of IPv6 demand. There exists,
however, substantial demand in the intermediate ratios for IPv4,
making up 6.9% of IPv4 demand.

We use a threshold value for cellular ratio to decide on the most
appropriate label for a subnet. Clearly, the accuracy of our method-
ology depends on this chosen threshold. In the following section we
describe our process for determining this threshold and validate our
choice against the ground-truth from three large mobile operators.

4.2 Parameter Selection & Validation

We derive our threshold values for cellular address identification
using ground truth information from 3 large mobile carriers. Our
data comes from a diverse set of operators: a large mixed European
mobile provider (Carrier A), a large dedicated MNO in the U.S
(Carrier B), and a large mixed MNO in the middle east (Carrier C).
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Figure 3: Sensitivity of cellular ratio thresholds for three
large mobile operators. We calculated the accuracy, using
the F; score, of our classifier across different cellular thresh-
olds. The choice of cellular ratio is very resilient, mainly due
to the low incidence of false positives of cellular from the
Network Information APL

For each operator, we obtained a list of IP subnets labeled as
belonging to either the cellular or non-cellular (e.g. fixed-line) sec-
tion of their network. To determine the appropriate threshold for
cellular network detection, we compute the accuracy of our method
across different threshold values, looking at the precision and recall
of our detected cellular subnets compared to ground-truth data.

Precision and recall are common metrics for binary classification.
Precision, also called the positive prediction value, is fraction of
correctly classified items over the total classified items (ﬁ)
Recall, also known as sensitivity, is the fraction of correctly labeled
items over the true number of items in that class (%) In this
context, true positives (TP) represent correctly identified cellular
subnets, and true negatives (TN) as correctly identified fixed-line
subnets. False positives (FP) denote fixed-line subnets which were
identified as cellular, and false negatives (FN) represent cellular
subnets which we inaccurately identified as fixed-line.

We compute the accuracy of all threshold values between the
range (0,1] by calculating the F1 Score of each threshold. The F1
Score is a combination metric which represents the harmonic mean
between precision and recall, and strikes a balance between the ac-
curacy and the comprehensiveness of the classified results. Figure 3
plots this F1 Score threshold sensitivity for all three operators for
which we obtained ground-truth data.

The figure shows the stability of classification accuracy across a
wide range of threshold values. Across each operator, the accuracy
of our detection remains relatively stable for all threshold values
between 0.1 and 0.96, implying that our method is robust to different
threshold choices. This stability is the result of the high confidence
in information that a cellular label carries. There are very few
cases which lead to cellular false positive results from the Network
Information APIL Unlike WiFi labels which can occur in cellular
access links due to tethering and other intermediate connectivity,
cellular labels are only obtained when the device is connected
through a cellular network interface. In this way, even cases where
10% of the reported labels are cellular are enough to correctly
classify a cellular subnet.
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TP FP TN FN Precision Recall F1

Carrier A* CIDR 496 16 89,553 4,626 0.97 0.10 0.09
Demand 70.96 0.142 1306.36 15.217 0.99 0.82 0.9

Carrier B CIDR 2,937 0 0 35 1.0 0.99 0.99
Demand 46.01 0 0 0.016 1.0 0.99 0.99

Carrier C* CIDR 383 5 3,049 99 0.98 0.79 0.88
Demand 10.79 0.17 42.85 0.15 0.98 0.98 0.98

Table 3: Classification accuracy of our approach for a three large mobile operators. Count is the classification accuracy for
individual CIDRs, Demand is the classification accuracy weighted by each CIDR’s traffic demand. *Mixed operator.

For the remainder of this paper, we set a threshold of 0.5 to denote
cellular subnets. We acknowledge that this is a rather conservative
threshold given our sensitivity analysis, but we wished to balance
the demand curve from Figure 2, which shows low demand below
cellular ratios lower than 0.5, and to cover as much cellular demand
as possible while minimizing false positives. We believe a simple
“majority” label matches these goals.

Validation. We now report on the accuracy of our approach
and chosen threshold for cellular network identification. Table 3
reports this accuracy for the three mobile operators, showing the
classification category (i.e. TP, FP, ...) and the Precision and Recall
of our approach. Rows labeled with CIDR show the classification
accuracy for all active subnets within that operator, and those
labeled with Demand show the accuracy when weighting CIDRs
by their relative traffic demand.

For all the operators, our method produced very high precision,
meaning a low false positive rate, for both total CIDRs and the
weighted subnet demand. The table highlights the method’s high
accuracy of classification, showing a precision greater than 0.97
in all instances. This means that for the three operators tested,
upwards of 97% of subnets were correctly labeled as cellular. The
table also shows that our method misses many no- or low-active
cellular subnets, as shown by the large number of false negatives
overall. In the case of Carrier A, our approach mislabeled 4,626
cellular subnets as fixed-line subnets. In this way, our approach
yields a lower bound on the number of detected cellular subnets,
but with a very high confidence in those cellular subnets detected.

4.3 Identifying Cellular Subnets

Applying this methodology to our BEACON dataset, we find a
total of 350,687 /24 subnets and 23,230 /48 cellular subnets. South
America holds the largest numbers of cellular /24 subnets with
87,589 subnets, closely followed by Asia with 86,618 subnets. North
America has only 27,595 /24 subnets despite being one of the largest
markets for cellular services.

We find IPv6 deployment within cellular networks to lag signifi-
cantly behind IPv4. Only 23,230 /48 subnets were detected world
wide, and only North America shows substantial deployment of
IPv6 addresses. The identified deployment of IPv6 in North Amer-
ican networks corroborates recent findings by Plonka et al. [30]
identifying U.S. mobile carriers as some of the largest IPv6 adopters.

Looking at the fraction of addresses that are cellular, we find
7.3% of all active IPv4 /24 prefixes, and 1.2% of IPv6 /48 prefixes to
be cellular. We find a wide range in both the numbers and fractions

Continent #/24 #/48 % Active
IPv4 IPve6
Africa 79,091 28 53.2% 2.0%
Asia 86,618 4,613 5.7% 0.5%
Europe 65,442 2,117 4.8% 0.3%

North America 27,595 16,166 2.1% 9.9%
Oceania 4,352 35 5.4% 0.07%
South America 87,589 271  22.6% 0.9%
Total 350,687 23,230 7.3% 1.2%

Table 4: Number of detected cellular subnets during Decem-
ber 2016.

of the IP addresses that are cellular across continents. In Africa and
South America, for instance, 53.2% and 22.6% respectively of all /24
subnets detected are cellular. This is in clear contrast to the fraction
of cellular subnets found in the remaining continents, which range
between 5.7% in Asia to 2.1% in North America. We similarly find a
lower relative deployment of IPv6 in cellular networks, again with
North America being the exception with nearly 10% of active /48
subnets coming through cellular subnets.

Despite the reported benefits of IPv6 in mobile networks, such
as improved performance [14], we find IPv6 deployment to be
limited across global cellular networks (only 7.7% of operators). In
our dataset, we found only 52 of the 668 global networks (7.7%)
which support IPv6. Geographically these were found in only 24
countries, with the countries with the greatest numbers of IPv6
networks being Brazil, with 6, and Myanmar, the U.S. and Japan
with 5 each. Of those networks, those with the largest numbers of
discovered subnet (three out of top four ASes) were in the U.S., and
the remaining network in India.

5 CELLULAR AS IDENTIFICATION

In the previous section we applied our methodology to identify
cellular network subnets. In the following paragraphs we extend
our approach to label ASes. This information is valuable to a variety
of services such as content providers and delivery networks, for
tasks such as performance debugging, transport customization and
the management of performance SLA for their customers, among
others.

Using our methodology for subnet identification, a straw-man
approach for labeling cellular ASes is to tag any network with 1 or
more cellular /24 or /48 subnets as cellular. Using such an approach,
we find 1,263 (out of 46,936) ASes that fit this category. A cursory
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Figure 4: Distribution of demand and beacon responses per
ASN.

investigation of the tagged ASes, however, reveals several networks
that are obviously not cellular, such as those offering proxy services.

Looking at our initially labeled set, we see that most of the
miss-labeled ASes are cloud infrastructure hosting companies or
companies offering proxy services for cellular users. Proxy net-
works for cellular connections are services that reroute traffic from
mobile devices, such as performance enhancing proxies for mo-
bile browsers [4]. For example, two of the ASes listed were for
Google (AS 15169) and Opera Software (AS 21837), both of which
operate performance enhancing proxies for their mobile browsers:
Chrome Mobile [4] and Opera Mini [28]. Reverse DNS entries for
the proxy cellular addresses corroborate this, having entries such
as google-proxy-*.google.com for Google’s proxy service, and
*.opera-mini.net for Opera’s proxy service. Other common ex-
amples include the networks of cloud infrastructure companies,
Amazon Web Services or Digital Ocean. We believe these are used
to forward traffic from mobile devices for either proxy or VPN
services specializing in mobile connectivity [21].

The occurrence of these networks are a product of our data
collection approach, which records client IP addresses from the
reported analytics beacon data. A connection terminating proxy —
which most web accelerating proxies are — will forward the client
request through a new HT TP request originating within the proxy’s
network, yet the connection information contained within the bea-
con will report the cellular connection actually experienced by the
client. A similar problem is experienced by VPN services used by
mobile clients, since their external IP addresses are representative
of the VPN service. In the following paragraphs we describe several
heuristics for refining the preliminary list of cellular-tagged ASes.

5.1 Determining Cellular ASes

To filter out the aforementioned false positives (i.e., from cloud
and proxy services) we rely on a set of heuristics. The input to
these heuristics is the collection of ASes with one or more detected
cellular subnet. The followings paragraphs provides details on such
heuristics and their application to the BEACON dataset.

1: Exclude ASes with low cell subnets’ demand. From the input
set of potential cellular ASes, we find that a large fraction of them
have small amounts of overall cellular demand. Figure 4a displays
the distribution of demand from each of these 1,263 ASes, showing
that 40% of such ASes represent more than 6 orders of magnitude
less demand than the largest cellular ASes. We opted for excluding
ASes which have a total cellular demand less than 0.1 DU, removing
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Rule Filtered Remaining
1. Exclude ASes with a cumulative cellular 493 770
demand < 0.1 DU

2. Exclude ASes with < 300 hits 53 717
3. Exclude based on CAIDA AS-classification 49 668
Totally excluded 595

Table 5: Summary of the application of AS filtering rules.
From the 1,263 ASes with at least one cell CIDR, we are left
with 668 (~53%) after applying these rules.

493 ASes and leaving 770 ASes. We exclude these low demand ASes
as their demand may suggest false-positive cases in our detection
methodology, without impacting our planned analysis.

2: Exclude ASes with low beacon responses. We further exclude
from this set those with less than 300 beacon responses. The selected
ASes fall in the bottom 5th percentile of all ASes with respect
to demand. This excludes an additional 53 networks leaving 717
remaining.

3: Exclude non-access ASes. We utilize CAIDA’s AS classifica-
tions [1] which labels ASes as either Enterprise, Content or Tran-
sit/Access. We filter out all ASes which are labeled at Content or had
no known class. This filtering removes the remaining non-access
networks such as networks hosting performance enhancing proxy
services which exhibit large amounts of “cellular” demand. From
the previous set of 717 networks, AS-class filtering reduces this to
668 detected cellular ASes.

Table 5 presents a summary of the application of these heuristics
to the BEACON dataset. From the 1,263 ASes in the full dataset (out
of 49,936 total) with one ore more cellular CIDRs, we exclude 595
(=47%) in total, after applying all heuristics. In the remainder of
this paper, our results and analysis refer to these 668 ASes as the
set of active cellular ASes.

AF AS EU NA OC SA
# ASN 114 213 185 93 16 48
Avg./Country 2.6 45 42 39 20 40

Table 6: Detected cellular ASes by continent.

We summarize the locations, at the continental level, of the re-
maining 668 ASes in Table 6. We find different numbers of detected
cellular ASes per continent, ranging from the 16 in Oceania to the
213 in Asia, although the average per country in each continent
show similar patterns with between 2 to 4.5 cellular ASes per coun-
try (for this calculation, we only include countries with at least one
detected cellular AS). Note that these are averages, and countries
with the largest numbers of cellular ASes in their continent greatly
exceed those averages (e.g., 13 in India, 17 in Japan, 25 in China, 29
in Russia and 40 in the U.S).

6 THE SHAPE OF CELL NETWORKS

In this section we explore different features of the 668 identified
cellular ASes, including their access technology composition, and
their demand at the subnet and operator level. We close with a



IMC ’17, November 1-3, 2017, London, UK

CDF

=== Cell. Subnet Fraction
Cell. Demand Fraction

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Cellular Demand

Figure 5: Fraction of cellular demand and cellular subnets
for each of the 668 cellular ASes, including mixed networks
with both fixed-line and cellular services.

look at DNS resolver usage for cellular clients across these different
ASes.

6.1 Mixed Operators

We find that cellular access networks can exist in either dedicated or
mixed ASes. We define dedicated ASes as those offering only cellular
connectivity to customers, though this can include home broad-
band delivered over cellular connection. Mixed networks are those
offering both cellular and fixed-line services to customers, where
fixed-line services include residential broadband technologies like
DSL, cable or fiber-to-the-home (FTTH). Here we investigate the
degree of mixed networks for global cellular ASes.

Mixed networks arise as many Internet service providers offer
both class of services to customers. Through conversations with
operators of large mixed networks, we learned that management
simplicity and cost savings are some of the main motivations for
these networks, especially given the exponential growth in mobile
data traffic. While convenient for operators, mixed ASes complicate
the work of network services, such as CDNs, trying to optimize
performance, or diagnose performance problems of end-users.

We classify cellular networks based on the fraction of their net-
work demand that is cellular. We calculate the cellular demand (CD)
of an AS as the cumulative demand from all cellular subnets . The
cellular fraction of demand (CFD) is derived as the ratio of Cellular
Demand to the overall demand from all active subnets within that
AS.

Figure 5 plots the fraction of each AS’s demand that is cellular
(CFD). When looking at this distribution, we find no particularly
popular configurations of cellular operators, with demand fractions
forming a continuous spectrum rather than distinct classes.

To explore this further, we manually investigated the top 50
cellular ASes in terms of cellular demand (CD), labeling each as
either Dedicated or Mixed based on information from the providers’
website. In cases where mixed networks use multiple ASes, we still
label the AS as cellular if the fraction of demand is greater than
0.95. Using this criteria, we find 32 of the top 50 cellular ASes are
dedicated, with the remaining 18 residing in mixed ASes. Look-
ing at the dedicated ASes, we find that 19 of the 32 have demand
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fractions (CFD) greater than 0.99, and that 29 of the 32 (90%) have
fractions greater than 0.95. The lowest fraction of cellular demand
in a dedicated operator was 0.9, which we found in an Asian cel-
lular operator. Upon further investigation into why the cellular
fraction was so low within a dedicated operator, we found nearly
all non-cellular demand contained within two /24 subnets which
we believe host HTTP proxies. Each subnet contained substantial
platform demand - large numbers of HTTP requests — but almost
zero hits in our BEACON dataset — which requires Javascript. We
concluded that since no client browsers were active within these
subnets, that they were likely terminating proxies. Within the 18
mixed ASes, we find cellular demand comprising anywhere from
4.9% of total demand, up to 81% in certain ASes.

Based on this analysis, we consider any AS with a celular fraction
of demand greater than 0.9 to be a dedicated AS, and all those lower
than 0.9 to be mixed ASes. Applying this criteria to our dataset,
we find that 58.6% of cellular ASes are mixed networks, with 392
mixed to 276 dedicated cellular ASes. We find the locations of
mixed operators to be evenly distributed, and roughly half of all
detected cellular ASes within all continents. The fraction of mixed
operators across continents is relatively equally distributed, with
51% in Africa, 53% in Asia, 56% in Oceania, 61% in Europe, 69% in
North America, and 71% in South America. Looking at the demand
from each network type, we find that although they outnumber
dedicated networks, only 32.7% of cellular demand originates in
mixed networks.

Also shown in Figure 5 are the fraction of each AS’s subnets that
are labeled cellular. We notice the large gap between the distribution
of subnet and demand fractions that are cellular. The gap is larger
than 0.5 at median, indicating that even in networks where the
majority of demand is cellular, a sizable portion of subnets are low-
demand and non-cellular. We expand on this disparity between
cellular subnetcellular demand in the following section.

Composition of individual mixed networks. We now compare
subnet allocation and cellular demand between two large cellular
ASes, a dedicated and mixed one. We pick a large U.S. operator as
the dedicated cellular AS and a large mixed European operator as
the example of a mixed network. The US operator is one of the
largest cellular operators in terms of demand. Figure 6 plots, for
each cellular AS, a CDF of demand along with a CDF of subnet
allocation, across each subnets calculated cellular percentage (§ 4.3)

We see in Figure 6a that even within a dedicated cellular AS, 40%
of /24 subnets have a cellular ratio of 0, with virtually no demand.
Similar, nearly 50% of addresses with a cellular ratio greater than
0.95 (basically all cellular) also accounts for little to no demand.
Nearly all demand in this AS comes from a few /24 subnets which
range in cellular ratios between 0.7 and 0.9.

This pattern is in clear contrast with that of mixed operators,
which serves fixed-line and cellular customers out of the same AS.
Despite being one of the largest cellular providers in its country,
less than 2% of its /24 subnets have a cellular ratio greater than
0.2, and capture less than 6% of network demand. In fact, in this
operator only 24 /24 subnets account for 99.3% of cellular demand.
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Figure 6: Breakdown of 2 large cellular ASes, one dedicated and one mixed. The use of active addresses vary widely depending
on operator, across overall CIDR space utilization and fraction of cellular demand.
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Figure 7: Cellular demand distribution across all identified
cellular operators. The top ten global cellular operators hold
a disproportionally large fraction of the total, accounting
for 38% of global cellular demand.

6.2 Traffic Demand

We now investigate the distribution of cellular traffic demand, first
across different operators, and second within individual operator
networks.

Traffic demand across operators. We first look at the distri-
bution of demand across our set of global cellular ASes. Figure 7
plots the cellular demand across cellular ASes, with ASes ranked by
demand. We represent demand as the normalized fraction of overall
global cellular demand originating from each AS. We observe a
disproportionally high share of demand contained within the top
10 ASes, and particularly among the top 5 ASes. In fact, these top
five ASes alone account for 35.9% of the global cellular demand.

In Table 7 we take a closer look at these top ten ASes, their coun-
try of origin and their cellular demand. Even within these top ten
operators, traffic is largely skewed towards the very top operators,
with the largest mobile AS containing 8.8x the demand from the
10th ranked operator. We first notice that the list is dominated by
the two largest cellular ASes with respect to demand, approximately
equivalent in their total demand, and each with 62.2% and 61.7%
greater demand than the third ranked operator.

Rank Country Demand Mixed

(%)
1. US 9.4%
2. US 9.2%
3. US 5.7%
4. IN 4.5%
5. US 3.8%
6. JP 3.3%
7. JP 2.4% v
8. D 1.5%
9, AU 1.2% v
10. JP 1.0% v

Table 7: Top ten ASes by demand around the globe.

Additionally, we can see that these large ASes are located largely
in either the U.S. or Japan, which account for 7 out of the top 10
cellular ASes. The U.S. alone constitutes all top three cellular ASes,
as well as 4 out of the top 5 ASes. Last we see that while the all top 6
ASes are dedicated cellular, 3 out of the top 10 are mixed operators,
meaning they exist in networks composed of both cellular and
fixed-line access technologies.

Subnet Traffic Demand. Changing our focus to subnets, we
find that cellular traffic is dominated by a small number of /24
subnets. These heavy-hitter cellular subnets are much more con-
centrated in their demand than are seen in fixed subnets. Figure 8
illustrates this for a large mixed European ISP.

In the figure, the majority of cellular demand is distributed across
only 25 individual /24 subnets, which capture 99.3% of all cellular
demand. After those top 25 subnets, demand in the next largest
cellular subnet steeply drops by nearly two orders of magnitude.
In contrast, the fixed-line demand is more gradually distributed
across its addresses. The drop off in fixed-line subnet traffic occurs
after 3 orders of magnitude more addresses than for cellular. In
this particular network, cellular demand accounted for only 4.9%
of the total, and yet all of the 25 top cellular subnets originated
more demand than the largest fixed-line subnet. This can be at least
partially explained in light of the widespread use of carrier-grade
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Figure 8: Distribution of subnet demand for cellular and
fixed subnets within a large European mixed network. Cel-
lular demand is concentrated within a small handful of /24
subnets, with nearly all cellular demand contained within
25 /24 prefixes. Notice log-scale on the y-axis.

NATs within cellular networks [32, 39]. In the larger context, this
means that cellular addresses are some of the most concentrated
network subnets on the Internet with regards to demand and that,
in many instances, they can be represented by a relatively few
number of IP addresses.

6.3 DNS and Cellular Networks

Last we present the results of our analysis of DNS resolvers usage
in cellular networks. Our vantage point at a large CDN allows a
comprehensive look at the DNS traffic from networks worldwide.
In the following paragraphs we look first at the assignment of DNS
resolvers in mixed cellular networks and then analyze the use of
public DNS services across all cellular networks.

To analyze resolver usage across cellular clients, we first gen-
erated client-to-resolver affinities, produced by a similar method
to those used by Chen et al. [7]. The end result is a weighted as-
sociation between client subnet and resolver IP addresses. For our
analysis, we combine these client to resolver associations with the
previous two datasets, to calculate the amount of demand from
each subnet assigned to each resolver. After aggregating these data
sources by resolver, we are left with cellular and fixed-line demand
originating from each resolver.

Mixed Network Resolvers. We first calculate the fraction of
cellular demand across all DNS resolvers in the 392 previously de-
termined mixed cellular ASes. The sharing of resolvers between
mobile and fixed-line customers has clear implications for con-
tent providers and delivery networks, since DNS-based redirection
remains the dominant method for content request routing [33].
Figure 9 plots the CDF of this fraction of cellular traffic across all
resolvers in the mixed cellular networks identified in the previous
section. A fraction of 0 indicates a resolver that sees only fixed-line
requests while a fraction of 1 indicates a resolver that sees only
cellular traffic requests.

The figure clearly shows that a majority of resolvers - close to
60% - are shared between cellular and fixed-line customers, with
the median resolver serving approximately 25% cellular and 75%
fixed-line demand. The reminding resolvers appeared to be split
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Figure 9: Demand fraction of cellular traffic on cellular re-
solvers. Nearly 60% of resolvers in mixed cellular networks
are shared between cellular and fixed-line customers.

evenly (= 20% on each side) between those dedicated to cellular
and non-cellular requests.

Sharing resolvers between cellular and fixed-line customers may
not indicate any issues, since both fixed-line and cellular clients
could reside in the same geographic areas, and peer at the same
locations. However, we discovered several operators where cellular
clients were assigned to distant shared resolvers, yet resolvers were
proximal to their fixed-line customers. For example, in a large
mixed cellular operator in Brazil, cellular clients in Fortaleza in
northern Brazil are assigned to DNS resolvers in Sao Paulo, 1470
miles away. On the other hand, the fixed-line customers assigned
to those resolvers were nearly all in Sao Paolo, and represented 80%
of that resolvers’ end-user demand.

Public DNS Usage. We next look at public DNS usage across
cellular networks. Public DNS services have grown increasingly
popular in recent years due to claims of greater reliability and their
potential for censorship avoidance. On the other hand, previous
work has also shown that their use may result in suboptimal redi-
rections to replicas located far away from clients [9, 29]. Despite
previous reports to the contrary [33], we find that outside of the
U.S. there is significant adoption of public DNS services in cellular
operators. To calculate the rate of public DNS usage in cellular
networks we use the same methodology as above and compute the
fraction of demand resolved through common public DNS services:
GoogleDNS [15], OpenDNS [25], and Level3 [20].

Figure 10 shows the fraction of requests coming through three
popular public DNS services. While U.S. operators adhere to con-
ventional wisdom on the use of public DNS in mobile operators,
with less than 2% of requests being sent through public resolvers,
we found a sizable number of global MNOs reliant on public DNS
infrastructure despite their potential impact on network perfor-
mance and QoE. Note that unlike in broadband networks, where
users may change their DNS configuration independently of their
operator, to use of public DSN service in cell networks implies op-
erator adoption. In one large operator in India, for instance, we see
public resolver being use in nearly 40% of cases. Both Honk Kong
operators use public resolvers for over 55% of requests, and in the
extreme example, we see 97% of request demand coming through
public DNS resolver for a mobile operator in Algeria. The latter is
most likely due to that operator utilizing a DNS forwarder towards
these public options.
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Continent Cellular Fraction Global Cellular  Subscribers Demand/

(%) (%) (M) [17] 1000 Subscribers
Oceania 23.4% 3.0% 43.3 0.0113
Africa 25.5% 2.9% 954 0.0005
South America 12.5% 4.1% 499 0.0013
Europe 11.8% 15.9% 968 0.0026
North America 16.6% 35% 594 0.0095
Asia* 26.0% 38.9% 2,766 0.0022
Overall 16.2% 100% 5,825 0.0053

Table 8: Cellular demand statistics by continent (* excluding China).
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Figure 10: Public DNS usage in selected cellular networks
around the globe, labeled by network country. Outside of U.S.
operators, we see large fractions of cellular users reliant on
public DNS services.

One possible explanation for the prevalence of public DNS usage
in operators from countries such as India, China and Brazil may be
the reported larger fraction of non-handset devices connected to
cellular networks — connected either directly or tethered through
mobile hotspot. Investigating the variety of device types across
different networks is left as future work.

6.4 Summary of Key Findings

We now summarize the key findings from this section. We pre-
sented the first survey on the composition and traffic dynamics
of global cellular networks. We highlighted the diversity of the
network composition — mixed or dedicated ASes — and supporting
infrastructure, such as how network infrastructure such as DNS
resolvers are assigned and shared.

Finding 1: A majority of cellular networks (58.6%) are mixed,
hosting both cellular and fixed-line broadband clients. Given the
prevalence of mixed ASes, efforts on network characterization ef-
forts should take access technology composition into account.

Finding 2: Cellular demand is centralized in a few, large net-
works. We find that the top 10 cellular ASes account for 38% of
global demand. Each of the top 10 operators reside in countries
that cover large geographic areas, and have well developed cellular
infrastructure. In the future, overall demand may become more
equitable as more operators upgrade from 3G to LTE infrastructure.

Finding 3: Cellular traffic is concentrated in a small fraction
of IP addresses. Due to the presence of NATs for cellular clients
in many networks, a handful of /24 subnets generate much of the

cellular demand, while the majority of active cellular addresses
carry very little demand. Attempts at measuring cellular networks
from IP addresses must be aware of these concentrations in traf-
fic distributions. Such concentrations may also make possible to
capture representative samples of measurements for these networks
with a relatively small number of target addresses.

Finding 4: In mixed cellular networks, nearly 60% of DNS re-
solvers are shared between cellular and fixed-line clients. This
implies that DNS resolvers alone are insufficient for identifying
client type. The use of shared resolvers may also challenge client
localization for common request routing systems. For instance, we
found in a large Brazilian MNO that while cellular and fixed-line
clients shared resolvers, the resolvers were only geographically
proximal for fixed-line clients. Cellular clients were located over
1470 miles away.

Finding 5: We find significant public DNS usage by cellular
clients outside the U.S. This breaks from common assumptions
that cellular clients only use operator provided DNS and further
complicates attempts at using DNS for end user mapping in CDN.

7 MACROSCOPIC VIEW OF CELLULAR
NETWORKS

In the following section, we take a macroscopic view of cellular
networks to identify trends that may help inform the different
Internet stakeholders — mobile operators, content providers and
policy makers.

7.1 Global Cellular Demand Distribution

We first take a look at the overall distribution of global cellular
demand at the continent level. We look at cellular network trends
across the following metrics: (i) the percentage of a continent’s
demand that is cellular (ii) the percentage of global cellular de-
mand originating from that continent (iii) the number of mobile
subscribers, 4 per continent [17] and (iv) the cellular demand per
subscriber. Table 8 summarizes these metrics by continent.
Column 1 presents the percentage of each continent’s demand
that originates from cellular access links. Overall we find that cel-
lular networks account for 16.2% of all demand worldwide. At first
take, this appears to be quite different (2-3x) that what has been re-
ported previously by industry. For instance, the 2016 > report from
Ericsson [10], based on 2015 data, finds mobile traffic to account

4Subscriptions refer to all mobile subscriptions including voice, not only mobile data
5The latest report to include both mobile and fixed-line data traffic.
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Figure 11: Normalized fraction of global cellular demand by country across continents.

for 8.11% of the global total while the 2017 Cisco VNI states that
mobile traffic accounts for 8% of global traffic [8].

The difference can be at least partially explained by our use of
request demand to calculate demand. While this metric is useful
for comparison, e.g. between continents or countries, it is difficult
to infer from it overall traffic demand as defined in those reports
since, in many cases, objects served for the same application-level
request over a cellular connection are much smaller than on a wired
connection.

Looking at individual continents, the fraction of cellular demand
varies between 11.3% in Europe to 25.5% and 26% in Africa and
Asia, respectively. The high fractions of cellular demand in Africa
and Asia is partially explained by the limited deployment of fixed-
line telecommunications infrastructure. The European’s fraction is,
however, somewhat surprising given the mature mobile telecom-
munications industry. It is important to note that our calculations
exclude demand data from China. We did not feel confident in the
demand values we obtained for Chinese end users, and therefore ex-
cluded it from our calculations. Our data therefore underestimates
the overall demand fraction from Asia, since it lacks data for China
and its 1.3 billion mobile subscribers [17].

We next look at the percentage of cellular demand contained
within each continent. We find Asia generates the largest amount
of cellular demand, with 38.9% of the global cellular total. North
America is the next largest with 35%, followed by Europe with 15.9%.
South America (4.1%), Oceania (3%) and Africa (2.9%) compose the
remaining 10%. These trends are in line with industry reports [10]
showing Asia, followed by North America as the main contributors.

When looking at demand per subscriber (Col. 5), we find that
Oceania has the greatest demand per subscriber, followed closely by
North America. This may be due in part to the type of access tech-
nology, devices and particular subscriptions with large penetration
of high-end devices and well-built WCDMA and LTE infrastruc-
ture [10]. 4G users have been shown to generate 10x the traffic than
3G networks [8]. Conversely, Africa has the lowest per subscriber
demand, which one would expect given its infrastructure is domi-
nated by second generation wireless technology (GSM and EDGE),
and has the lowest penetration of 4G wireless technology [10].

7.2 Country-level Statistics

We look next at the distribution of cellular demand across individ-
ual countries within each continent. Figure 11 plots the top ten
countries within each continent, displaying the fraction of global

g 10* ‘
o X United States
o .

3 India
2 107 Indonesia 3
% +

b3 )
T 102k x4 b Finland Bolivia Laos 4
& 2 .
fa
IS a ¢ A X Ghana
o 10l b X « X +Fiji ]
(= A
X

- A x
@ A 8
S 100 [ gk k& x xxx_NA
= X A N + EU
8 bad + AAA SA

-1
. 107 Lox » . AF |
€ ¢ * AS
5 * * 4+ OC
= 10202 . . . .

0.0 0.2 0.4 0.6 0.8 1.0

Cellular Demand Ratio

Figure 12: Countries shown in relation to their overall cellu-
lar demand (CD) and fraction of cellular traffic (CFD). Notice
the log scale on the y-axis.

cellular demand within them. The figure highlights the large impact
of top countries, in terms of demand, on the overall distribution of
cellular demand. We observe a clear heavy tail distribution, with
the U.S. accounting for over 30% of global cellular demand. The top
5 countries, all in Asia with the exception of the U.S., contribute
55.7% of global cellular demand, and the top 20 countries make up
a notable 80% of the global total.

We investigate these trends further by looking, for each country,
at the relationship between cellular demand and the fraction of
that country’s total demand labeled as cellular. Figure 12 plots this
relationship with the country cellular demand (CD) on the y axis
and the fraction of total demand that is cellular (CDF) on the x axis.

The figure shows the wide range of degrees in which cellular
connectivity is relied on in different countries. We find the majority
of countries within Europe, South and North America all clustered
together on the far left, composed of cellular fractions of demand
lower than 0.2. The right 80% of the figure is populated mainly
by countries in Africa and Asia, and represent cellular dominant
network connectivity.

The frontier on the upper right side of the figure shows countries
with either very high levels of cellular demand (e.g., US), a very
high fraction of overall cellular traffic (e.g., Ghana), or both (e.g.,
Indonesia). For instance, although the U.S. has by far the largest
overall cellular demand, it only accounts for 16.6% of overall country
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traffic. In contrast, cellular demand in Laos and Ghana represents
87.1% and 95.9% of their overall country demand respectively. On
both extremes, Indonesia (ID), the 4th largest country for cellular
demand, uses cellular connectivity for 63% of its country’s traffic
demand! We believe these countries along the frontier represent
ideal targets for further study to understand the traffic dynamics
and user behavior in areas which are already mobile dominated.

7.3 Summary of Key Findings

We summarize the key findings from our macroscopic view of
cellular networks. This perspective illustrates the large dominance
in terms of traffic of a few markets, such as the U.S, and the various
roles played by cellular connectivity around the globe - from a
supplementary service in much of Europe to the primary means of
connectivity in Asia and Africa.

Finding 1: Cellular traffic makes up 16.2% of all global traffic
demand in our dataset. In Asia and Africa, cellular traffic accounts
for 25.5% and 26% of continent demand, respectively.

Finding 2: In terms of cellular traffic demand, the top countries
dominate the overall distribution, to an even greater degree than
AS level demand. The top 5 countries account for 55.7% of global
cellular traffic demand, and the top 20 comprise 80%.

Finding 3: In several countries (e.g., Laos, Indonesia), cellular
access is the dominant form of Internet connectivity and thus,
increasingly, part of these countries’ critical infrastructure.

8 CONCLUSION

This paper presents the first global analysis of cellular networks.
We described an approach to accurately identify cellular network
addresses using client browser signals and showed its effectiveness
in a range of mixed networks (i.e., networks that share both fixed-
line and cellular devices). Using this approach, we leveraged the
global vantage point of one of the world’s largest CDNs to map the
global cellular IP space and their hosting ASes, and analyzed their
traffic demand.

There are several directions we would like to explore in future
work. Though this paper presented a snapshot of cellular address
characteristics, we are exploring how cellular addresses evolve
over time, both in their assignment to cellular end-users, and how
demand shifts across cellular address space. In addition, we would
like to use our new map of cellular addresses, and our global CDN
vantage point to characterize user behavior across a wide range of
network services.
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