
AMP up your Mobile Web Experience: Characterizing
the Impact of Google’s Accelerated Mobile Project

Byungjin Jun† Fabián E. Bustamante† Sung YoonWhang† Zachary S. Bischof†⋆
†Northwestern University ⋆IIJ Research

ABSTRACT
The rapid growth in the number of mobile devices, subscrip-
tions and their associated traffic, has served as motivation
for several projects focused on improving mobile users’ qual-
ity of experience (QoE). Few have been as contentious as
the Google-initiated Accelerated Mobile Project (AMP), both
praised for its seemingly instant mobile web experience and
criticized based on concerns about the enforcement of its for-
mats. This paper presents the first characterization of AMP’s
impact on users’ QoE. We do this using a corpus of over 2,100
AMP webpages, and their corresponding non-AMP counter-
parts, based on trendy-keyword-based searches. We charac-
terized AMP’s impact looking at common web QoE metrics,
including Page Load Time, Time to First Byte and SpeedIndex
(SI). Our results show that AMP significantly improves SI,
yielding on average a 60% lower SI than non-AMP pages with-
out accounting for prefetching. Prefetching of AMP pages
pushes this advantage even further, with prefetched pages
loading over 2,000ms faster than non-prefetched AMP pages.
This clear boost may come, however, at a non-negligible cost
for users with limited data plans as it incurs an average of
over 1.4 MB of additional data downloaded, unbeknownst to
users.

CCS CONCEPTS
•Networks→Networkmeasurement;Mobile networks.

KEYWORDS
Google AMP; Accelerated Mobile Pages; Network measure-
ment; Mobile Networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6169-9/19/10. . . $15.00
https://doi.org/10.1145/3300061.3300137

ACM Reference Format:
Byungjin Jun† Fabián E. Bustamante† Sung Yoon Whang†
Zachary S. Bischof†⋆ , †Northwestern University ⋆IIJ Research,
. 2019. AMP up your Mobile Web Experience: Characterizing the
Impact of Google’s Accelerated Mobile Project. In The 25th Annual
International Conference on Mobile Computing and Networking (Mo-
biCom ’19), October 21–25, 2019, Los Cabos, Mexico. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3300061.3300137

1 INTRODUCTION
Over the last decade, the number of mobile subscriptions
has grown rapidly, surpassing 7.7 billion by late 2017 [25].
Since October 2016, more websites have been loaded on
smartphones and mobile devices than on desktop computers
as users spend up to three times more hours browsing on
their smartphones than on any other devices [43, 46].
Despite the shift toward mobile browsing, much of the

web has been designed for desktop machines on wired con-
nections. This “disconnect” typically translates into com-
plex websites that offer poor quality of experience to mobile
users [20], something that has recently received a signif-
icant amount of attention from researchers and industry
alike [21, 32, 36, 39, 49]. The impact of low quality of experi-
ence (QoE) on user retention (e.g., [19]) has led to a number
of efforts studying mobile performance and exploring ways
to reduce page load time (PLT) and related proxies of QoE.
Projects such as Facebook Instant Articles [10] rely on for-
mats and infrastructure to speed up browsing, while Amazon
Silk [13] and Opera Mini[18] do it through specialized web
browsers. Accelerated Mobile Project (AMP) is a recent effort
started by Google with a similar goal of improving the mo-
bile browsing experience. Announced in October 2015 [16],
AMP provides content creators with what is essentially a
stripped-down and optimized version of standard web devel-
opment tools. While there has been anecdotal evidence of
its benefits [22, 24], we are not aware of prior, independent
efforts to quantify its impact on users’ browsing QoE.
This paper presents the first characterization of the per-

formance impact of AMP on user experience. We use a set
of common metrics to characterized AMP’s impact on QoE
– Page Load Time (PLT), Time to First Byte and SpeedIn-
dex (SI) – with a corpus of over 2,100 AMP webpages and

https://doi.org/10.1145/3300061.3300137
https://doi.org/10.1145/3300061.3300137

their corresponding non-AMP counterparts, collected using
trending keyword-based search results.
We show that AMP significantly improves SI, yielding a

60% lower SI on average, not accounting for pre-rendering,
compared with non-AMP pages. The performance improve-
ment comes primarily from strict restrictions for simpler
page, lazy loading, caching in theAMPCDNand pre-rendering
of Google search results.

We find that the pre-rendering of AMP pages pushes this
advantage even further, with prefetched pages loading over
2,000ms faster than non-prerendered AMP pages. This clear
boost may come, however, at a non-negligible cost for users
with limited data plans as it results in over 1.4 MB of addi-
tional data downloaded on average, unbeknownst to users.1

Our contributions can be summarized as follows:
• We develop and apply a methodology to evaluate the
performance benefits of AMP. We use a corpus of
AMP and non-AMP page pairs gathered using trending
keyword-based searches (§3).

• We present the first characterization of AMP’s impact
onwebQoE, analyzing the contribution of the different
aspects of AMP’s design (§4).

• We quantify the performance benefits and potential
hidden cost of AMP’s use of prefetching, in terms of
the average number and the cost of additional bytes
downloaded on a search (§5).

• We make the collected data, test frameworks, corpus
of AMP pages and measurement results available to
the community.2

2 AMP OVERVIEW
The next paragraphs provide an overview of the AMP project,
the sometime confusing set of URLs associated with it, and
Google’s approach to improvemobile web performance through
AMP.

2.1 AMP and its URLs
Web pages have become increasingly complex over the years,
from early sites hosting text and images to current ones with
tens or hundreds of files, including several HTML, JavaScript,
CSS and images, that fetch content from a range of third-
party providers such as ad agencies, analytics and content
distribution networks (CDNs) [20]. Although most networks
have managed to “keep up” with this increased complexity,
mobile web browsing can be excruciatingly slow, even when
doing it from high-end devices connected through state-
of-the-art networks. Given the potential impact that web
experience on user retention, several efforts have focused on

1The actual cost for a single user depends on the rate at which prerendering
is use and the frequency with which the user visits the prerendered site.
2http://www.aqualab.cs.northwestern.edu/projects/AMPUp.html

AMP indicator

AMP carousel

(a)

AMP Viewer URL

Original source

Contents from
AMP Cache URL

(b)

Figure 1: An example of a Google search result on an
AMP-enabled device (left) and an AMP page displayed
on the same device (right).

improving mobile users’ quality of experience, from Ama-
zon’s Silk to Facebook’s Instant Articles and Google AMP.
AMP aims to improve mobile web performance by re-

ducing website complexity and leveraging Google’s large
infrastructure and presence throughout the web browsing
pipeline. Since its first release in 2016, AMP continues to
gain adoption by content providers and CDNs [12], as we
briefly discuss in Section 7.

When a user submits a search in Google through an AMP-
enabled browser, the search results will typically include
AMP-enabled pages. Figure 1a shows an example of a search
result on Chrome, an AMP-enabled browser. When the user
clicks on an AMP link, perhaps from the search result page,
an AMP page such as the one in Figure 1b is quickly rendered.

The AMP URLs. There are three different types of URLs
associated with an AMP-enabled webpage: the AMP original
URL, the AMP cache URL, and the AMP viewer URL [27].
The AMP original URL is an AMP version of the page

hosted by the original content provider (potentially in the
provider’s CDN). The AMP original URL is not exposed to
users from Google search. This URL is validated and cached
on Google’s own dedicated CDN for AMP pages, the AMP
CDN, as the AMP cache URL [15].

Users do not typically encounter the AMP cache URL, but
see instead the AMP viewer URLs. When a user does a web
search that returns AMP-enabled results, one of the results is
pre-rendered behind the scene in a hidden iframe. If the user
clicks on this result, the AMP viewer nearly instantaneously
switches to the already rendered iframe. At this point, the
user has not moved to a different page, but the viewer URL
will be updated to reflect the document shown. To update
the browser URL, the viewer uses the History API3 which
3https://developer.mozilla.org/en-US/docs/Web/API/History

http://www.aqualab.cs.northwestern.edu/projects/AMPUp.html

Non-AMP URL: http://www.example.com/doc.html
Original AMP URL: http://www.example.com/amp/doc.html
AMP Cache URL: https://www-example-com.cdn.ampproject.org/c/www.example.com/amp/doc.html
AMP Viewer URL: https://www.google.com/amp/www.example.com/amp.doc.html

Figure 2: An example of four different types of URLs that can correspond to a single AMP-enabled article.

restricts the newURL to be in the same domain as the original
URL (i.e., Google’s search result URL) [27]. This restriction
means that the actual AMP page revealed to the user must
be served from the Google CDN, which is different from the
AMP CDN where the AMP cache URL resides. As a result of
this, the URL displayed at the top of the browser will make
the page look like it belongs to Google (i.e., the URL starts
with www.google.com/amp/).4 To provide the appropriate
attribution for the content, every AMP viewer adds a header
bar that displays the page’s actual origin.

In addition to these three AMP URLs, there is also the non-
AMP URL, that of the page hosted by the original content
provider. Note that not all publishers maintain this version
of the page.
For illustration, Figure 2 shows examples of the types of

URLs described for http://www.example.com/doc.html, in-
cluding the non-AMP URL and the three AMP-related URLs.

2.2 How AMP works
AMP’s potential performance benefits come mainly from
three sources: simpler, better performing pages and lazy
loading, caching in the AMP CDN and pre-rendering of page
search results.
First, AMP largely simplifies the original webpage and

replaces some of the standard HTML tags by its own HTML
tags, markedwith the <HTML E> (or <HTML AMP>) tag, in a per-
formant way. For example, object tags for images (<image>),
audio (<audio>), and video (<video>) are replaced, respec-
tively, by the AMP tags <amp-image>, <amp-audio>, and
<amp-video>. These objects must now be declared with
static sizes and are loaded by the AMP system. Also, AMP
restricts the use of JavaScript and CSS. AMP pages are not
allowed to include any author-written JavaScript besides the
AMP-provided custom AMP elements which have JavaScript
under the hood. The use of CSS is discouraged for the same
reason, and all styles must be written inline. AMP also limits
the total size of CSS code in order to minimize file size and
improve load time. The AMP team particularly put efforts on
preventing JavaScript and CSS from blocking the DOM ren-
dering during the initial page load. To clean the critical path,
all JavaScript on AMP pages are executed asynchronously,

4We briefly discuss the concerns about attribution in Sec. 7.

and all third-party JavaScript and other extensions like Insta-
gram embedding need to be in an <amp-iframe> to prevent
blocking the rendering of the base page.
Second, AMP adopts lazy loading of certain objects and

leverages Google’s AMP CDN for caching. It uses lazy load-
ing to avoid loading unnecessary objects. For instance, im-
ages and ads currently not in the first viewport are not loaded
until the user scrolls down. Most of these restrictions so far
are adapted on AMP original URLs. Beside caching, AMP
cache validates the owner’s original AMP page so that any
AMP page encountered by users is always a complete one
that has all benefit of AMP, and does additional optimization
of images, transforming images to have no invisible data, and
scaling down in size and quality for mobile devices careful
not to impact users’ visual experience.

Lastly, some of AMP pages in the Google’s search results
that users may potentially click (e.g., top result) are pre-
rendered at Google’s search results page in an effort to fur-
ther reduce loading times. This particular technique results
in instant-like access to the target page.
Beyond this, the combination of AMP and the Chrome

browser allows Google to configure both ends of a brows-
ing connection – the client (Google Chrome) and the server
(Google CDN),making it easy to deploy performance-enhancing
transport layer protocols such as QUIC [6, 31].

3 METHODOLOGY
In this section we describe the experimental methodology
we devised to understand the impact of AMP on mobile web
performance, including our approach to collecting AMP web
page URLs for analysis, our baseline for comparison, and the
testbed configuration and experimental design.

3.1 Collecting a set of AMP pages
To obtain a representative set of AMP pages for analysis, we
built a crawler and scraper with Selenium [1] that collects
AMP page URLs from Google search results. We search for
popular keywords using Google Trends for 2017,5 both glob-
ally and for the United States (US). We include keywords for
the US considering the dominance of the English language
in the web [42]. Google Trends provides a list of the top 10
search keywords for a number of popular categories (e.g.,

5The latest set at the time we began this iteration of our analysis.

http://www.example.com/doc.html

Category Num. of pages
News/Weather/Information 1,001
Movies 79
Law/Government/Politics 79
Television/Video 78
Financial News 76
World Football/Soccer 65
American Football 64
Automotive 61
Sports 59
Basketball 56

Table 1: Top ten most popular Alexa categories in
our collection. News organizations are the primary
adopters of AMP.

actors, TV shows, global news) in a given year. In total, we
collected 670 keywords, 150 globally and 520 from US, and
were left with 578 after removing duplicates. Nearly 90%
(522) of all keywords in the set were in English and 9% (52)
in Spanish. The remaining 1% of words were in Chinese and
Turkish.

We issued searches with these keywords (e.g., “meghan
markle”, “french election”) and collected distinct AMP viewer
URLs from the search results. Our 578 keywords yielded a
set of 3,401 unique AMP pages after removing duplicates.

3.2 Defining a baseline for comparison
A challenge we faced in characterizing the impact of AMP is
determining the most appropriate baseline for comparison.
Rather than crafting a set of synthetic pageswith andwithout
AMP, we rely on the fact that most AMP pages have an
associated non-AMP version hosted by the content provider.
In many cases, the non-AMP version can be found eas-

ily through the <link> tag in the page header (e.g., <link
rel="canonical" href="...">). For some of the pages
that do not include this tag, it is possible to find their non-
AMP version following some basic naming conventions (e.g.,
removing /amp/ from the original AMP URL) [27].

After expanding our dataset by identifying the correspond-
ing original AMP URLs as described, we were left with 2,132
pages for which we can find their non-AMP counterparts.
Table 1 shows the number of pages in each of the top 10 most
popular categories of the web pages in our collection. This
reveals that news organizations are currently the primary
adopters of AMP.

3.3 Testbed
For our evaluation, we use a testbed that consists of a ma-
chine using WebPageTest v17.12 [4], connected to the Inter-
net through a router under our control (Figure 3).

Scripts

Test machine
Wired router with

Network emulation

Internet

Target URLs

Figure 3: Testbed setup. The test machine runs our
scripts on top of WebPageTest.

103 104

PLT (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

AT&T
emulated_wired
no_emulation_wired

Figure 4: CDF of the PLT for each of the AMP pages
across three different network configurations (x-axis
in log scale.

WebPageTest (WPT) is an open source tool for testing
websites’ speed under different network conditions. We run
a private instance of WPT and use WPT’s wpt_batch.py+
API to automate testing. While WPT itself introduces a small
overhead when testing webpages, this is consistent across
sites and thus does not impact our comparative analysis.

Our client runs on a MacBook Pro with 16 GB of 1600MHz
memory and an Intel Core i7 processor. We use a TP-Link
N750Wireless Wi-Fi Dual Band router (TL-WDR4300) which
we configured to runOpenWRT (Chaos Calmer 15.05.1, r48532)
and Linux’s Traffic Control and Network Emulation tools,
which we use to emulate mobile network conditions. We use
a separate router, as in Kakhki et al.’s analysis of QUIC [31],
to minimize interference.

3.4 Web QoE Metrics
To study the impact of AMP on mobile web quality of expe-
rience, we rely on three commonly used metrics of QoE –
Page Load Time, Time to First Byte, and SpeedIndex [17].

Page Load Time (PLT) is the time until all objects on a page
have been loaded, while Time to First Byte (TTFB) is the time
at which the first byte of the payload is received at the client.
Speed Index (SI), a more recent “time to interactive” metric,
captures the visual progress as the page loads – potentially

103 104

SpeedIndex

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

non-AMP URLs
AMP cache URLs
AMP viewer URLs
AMP original URLs

(a) SI of AMP pages.

103 104 105

PLT (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

non-AMP URLs
AMP cache URLs
AMP viewer URLs
AMP original URLs

(b) PLT of AMP pages.

103 104

TTFB (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

non-AMP URLs
AMP cache URLs
AMP viewer URLs
AMP original URLs

(c) TTFB of AMP pages.

Figure 5: Overall performance of AMP. The x-axis is shown in log scale for each figure.

101 102 103 104 105

SpeedIndex

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Non AMP - AMP

Figure 6: The relative difference in SI between AMP
and non-AMP URLs (x-axis is log scale).

a more accurate approximation of a user’s experience (UX)–
and computes an overall score for how quickly the content
is painted [8]. Pages with faster performance have a lower
SI score. In our anlaysis, we focus on SI rather than PLT,
considering that AMP’s main goal is to improve the user-
perceiving speed, and SI nicely reflects it.

3.5 Network Environment
Due to the high data usage and cost of loading tens of thou-
sands of pages repeatedly, we configured the network con-
nection in our testbed environment to simulate the behavior
of a large US mobile provider. The settings for our testbed
were based on a characterization analysis of this network
using several tools, including SpeedTest [2] and NDT [3].
The connection offered nearly 45 Mbps of bandwidth with
40 ms of latency and almost 0% loss. To validate our emulated
connection, we loaded a set of AMP pages using the actual
and the emulated mobile connection, and compared PLT.

Figure 4 shows the distribution of PLT of AMP pages over
both the emulated and actual mobile connection. For context

we include the same distribution over a wired connection.
Overall, the distribution of PLT over the emulated connection
closely follows to that of the actual mobile service. Using the
Kolmogorov-Smirnov test to quantify the similarity of these
distributions, we find a K-S value of 0.097 with a p-value
of 0.99, suggesting that is highly unlikely they are different
distributions.

4 PERFORMANCE OF AMP
In the following paragraphs, we analyze the performance
benefits of AMP. We begin by discussing its overall impact,
before looking at the different aspects of AMP and their
contributions.

4.1 Overall performance
To evaluate the overall performance impact of AMP, we
compare the four different versions of each page: the non-
AMP, the AMP original URL (hosted by the original content
provider), AMP cache URL, and the AMP viewer URL version.
We loaded each page three times and measured SI, PLT, and
TTFB. Figure 5 presents these distributions for each version.

Overall, AMP cache URLs show the best performance
and AMP viewer URLs have the most stable performance
among all versions. Focusing on AMP, these two versions
should show similar performance given that both are already
optimized and are served from close-by servers via CDN
(AMP CDN for AMP cache URLs and Google CDN for AMP
viewer URLs). However AMP viewer URLs’ slightly worse
performance may result from the additional work done for
pre-rendering, whose benefits are not visible in this test.
The performance gaps between these version, as measured
by SI and PLT, get smaller toward the right of the graph
(e.g., higher PLT). We reason that the presence of the AMP
viewer header bar in AMP viewer URLs, placed over the top
of the original page, result in less content from the original
page being drawn in the first viewport in the AMP viewer,

100 101 102

Number of html

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

non-AMP URLs
AMP cache URLs
AMP viewer URLs
AMP original URLs

(a) HTML

100 101 102

Number of js

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

non-AMP URLs
AMP cache URLs
AMP viewer URLs
AMP original URLs

(b) JavaScript

100 101 102

Number of css

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

non-AMP URLs
AMP cache URLs
AMP viewer URLs
AMP original URLs

(c) CSS

100 101 102 103

Number of image

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

non-AMP URLs
AMP cache URLs
AMP viewer URLs
AMP original URLs

(d) Image

100 101

Number of video

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

non-AMP URLs
AMP cache URLs
AMP viewer URLs
AMP original URLs

(e) Video

Figure 7: The number of different object types loaded in AMP and non-AMP pages.

reducing the effect of heavier page. The higher variation we
observed on the performance of AMP cache URLs appears to
be the result of pages’ revalidation of AMP original versions.
AMP cache treats every page as if it came with stale-while-
revalidate=(3 months). We regard AMP cache URLs with the
worst 20% TTFB as revalidated pages while test.

Figure 5a shows the distribution of SIs for all types of URLs.
All AMP pages (AMP cache URLs, AMP viewer URLs and
AMP original URLs) show significantly lower SI (1,666 ms,
1,859 ms, and 2,488 ms respectively) and smaller standard
deviations (858 ms, 542 ms, and 1,574 ms respectively) than
the non-AMP version (with a mean SI of 4,142 ms and a
standard deviation of 3,370ms). AMP cache URLs particularly
shows 60% lower SI than non-AMP version. We can see the
the largest SI gap is between AMP original URLs and non-
AMP URLs, suggesting that much of the advantage of AMP
comes from a reduction in page complexity rather than its
reliance on the caching infrastructure.

Figure 5b plots the PLT results for the same four versions
of a page. Again, all AMP versions perform significantly
better in terms of PLT than the non-AMP counterparts, with
an average PLT dropping from 7,719 ms to 3,058 ms, a 2.5x
improvement on PLT. This large benefit comes from AMP’s
lazy loading (§ 2.2) that by delaying the loading of some

objects excludes them from the PLT calculations. Focusing
on the AMP versions, AMP cache URLs show the best PLT
(3,058 ms, compare with 3,342 ms for AMP viewer URLs and
3,882 ms for AMP original URLs).

TTFB also shows the performance benefits of using AMP.
As can be seen in Figure 5c, AMP cache and viewer pages
have a shorter TTFB than their non-AMP counterparts. For
the non-AMP URLs, we found an average TTFB of 1,333 ms
(standard deviation, σ = 2, 420 ms). Both AMP URLs had
much lower latency, with an average TTFB of 484 ms (σ =
267 ms) for the AMP cache URLs and 516 ms (σ = 83 ms)
for the AMP viewer URLs. Interestingly, the AMP origi-
nal URLs shows TTFB closer to those of the non-AMP ver-
sions, 1,225 ms. We believe this is due to the greater diver-
sity in terms of physical proximity of the different content
providers’ servers and CDNs compared to either the AMP
CDN or the Google CDN (for AMP cache and viewer URLs,
respectively). The higher, top 20% TTFB of AMP cache URLs
are probably caused by revalidation of the cache, as explained
before.

Through our evaluation, we found that while the distribu-
tion of SIs for the AMP versions of most sites were signifi-
cantly faster than ther non-AMP original counterparts, about
9% of non-AMP URLs have lower SI than their corresponding

Objects non-AMP Original Cache Viewer
HTML 16.8 (13.7) 7.7 (5.0) 7.9 (4.8) 10.0 (4.8)
JS 27.4 (24.5) 3.2 (6.0) 2.5 (4.2) 2.5 (4.0)
CSS 2.0 (4.8) 0.1 (0.5) 0.2 (0.6) 0.1 (0.4)
Image 45.8 (53.0) 11.6 (11.2) 10.9 (10.0) 10.0 (8.9)
Video 0.9 (2.8) 0.2 (1.1) 0.3 (1.0) 0.3 (1.2)

Table 2: Average (std) number of objects per URL type.

AMP version. Upon further inspection we learned that all
these cases are well-optimized non-AMP pages for which
the AMP’s additional optimizing task become overhead.

4.2 Website Complexity
We focus now on the differences in content between AMP
and non-AMP versions of a page. We find that the perfor-
mance improvement of AMP pages are significantly corre-
lated with a reduction of objects downloaded – JavaScript
objects in particular – for each page.

Figure 7 compares the total number of objects loaded per
page for five different filetypes (HTML, JavaScript, CSS, im-
age, and video) via the four types of URLs, while Table 2 lists
the averages and standard deviations (between parentheses)
for each comparison. Overall, the three types of AMP pages
show similar number of objects across file types. Compared
to the non-AMP version, on the other hand, the average num-
bers of HTML, JavaScript, and image objects are reduced by
nearly an order of magnitude. This trend, again, reflects the
impact of lazy loading as PLTs for entire pages do.
Looking across pages, there is a significant difference in

the shapes of the distributions of the number of objects for
AMP and non-AMP pages. For instance, AMP pages tend to
be much more uniform in terms of the number of objects
per page than their non-AMP counterparts (for all object
types, the standard distribution for the number of objects on
AMP pages is always smaller than for the non-AMP version).
These large differences translate into much less time spent
downloading the different types of objects. For example,
the total time spent loading HTML objects for non-AMP
pages is reduced from 5,370 ms (σ = 4, 473 ms) to 1,979 ms
(σ = 996 ms) for AMP cache URLs. On the other hand, the
time improvement is smaller for CSS objects, as the reduction
in the number of CSS objects is not as dramatic. For CSS
objects, the total time spent loading for non-AMP pages is
300 ms (σ = 479 ms) and 40.5 ms (σ = 136 ms) for AMP
cache URLs.

Our analysis of AMP versions show some interesting han-
dling of CSS and HTML objects. While AMP requires all CSS
to be in-lined, Fig 7 suggests there are some CSS files for a
few AMP pages. Most of these CSS objects in AMP pages
are either a font or CSS initiated by a third-party application.
Other than CSS files from third-party applications, there are

Figure 8:We use Time 1 + Time 2 to compute load time
of image objects that block DOM, removing overlap-
ping times.

Objects non-AMP Original Cache Viewer
HTML 1386 (2433) 1028 (1282) 312 (265) 335 (105)
JS 667 (739) 22.1 (118) 2.5 (17.5) 0.4 (10.6)
CSS 125 (220) 2.9 (26.4) 0.3 (5.5) 0 (0)
Image 518 (544) 30.6 (129) 6.3 (42.6) 0.2 (5.7)
DOM 3179 (3599) 1658 (1459) 860 (532) 907 (115)

Table 3: Average (std) load time (ms) of objects before
DOM event for each URL.

also a few AMP pages with actual CSS objects loaded from
another URL of the same organization of the original page.
It seems those providers has adopted this technique for uni-
formity of their pages. As for HTML objects, unlike other
objects, AMP viewer URLs have prominently more files than
other AMP versions. The more HTML objects are typically
HTML pages downloaded from AMP cache URLs. This is
predictable in consideration of that AMP viewer URLs’ fetch
the actual AMP page from the AMP cache URLs.

4.3 Removal of objects blocking the DOM
Although AMP pages typically have significantly fewer ob-
jects and a much lower PLT than their non-AMP versions,
the main goal of AMP is improving user-perceived initial
load time, to provide a “nearly instantaneous load”.

One aspect that impacts initial loading time is the loading
of the Document Object Model, or DOM, that provides the
tree structure representation of a page. The loading of the
DOM can be blocked or delayed by the fetching of additional
objects such as HTML or JavaScript. AMP adopts additional
techniques to prevent objects from blocking the DOM includ-
ing the use of asynchronous JavaScript, in-line CSS, as well
as minimizing style recalculation and removing unimportant
objects from the critical DOM construction path.

While we are not able to analyze the individual contribu-
tions of each of these features, we study the impact of them,
as a whole, on the time to the triggering of the DOM content
loaded event. We focus on analyzing the timing of

102 103 104

Load Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

non-AMP URLs
AMP cache URLs
AMP viewer URLs
AMP original URLs

(a) HTML

102 103

Load Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

non-AMP URLs
AMP cache URLs
AMP viewer URLs
AMP original URLs

(b) JavaScript

102 103

Load Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

non-AMP URLs
AMP cache URLs
AMP viewer URLs
AMP original URLs

(c) CSS

102 103 104

Load Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

non-AMP URLs
AMP cache URLs
AMP viewer URLs
AMP original URLs

(d) Images

103 104 105

Load Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

non-AMP URLs
AMP cache URLs
AMP viewer URLs
AMP original URLs

(e) DOM load event

Figure 9: DOMContentLoadedEventEnd timing and load time of objects loaded before it (blocking the DOM). All
x-axes are log scale.

DOMContentLoadedEventEnd (DOMLoaded), logging the ob-
jects loaded before DOMLoaded timing events for each version
of the URLs (Figure 8). Figure 9 shows, for each object type,
the total time spent loading each type of object before the
DOMLoaded timing event for their page.

Overall, we find that the AMP techniques indeed result in
a faster DOMLoaded event for the AMP versions of a page over
their non-AMP counterparts as Table 3 shows. Regardless of
version, AMP pages generally take very short time in loading
most kind of objects except HTML, which is as expected
since every webpage must load the base page. Except HTML
objects, the loadtime of objects is consistently smaller for
AMP original URLs than for non-AMP URLs, and for AMP
cache and viewer URLs than for AMP original URL. The
different optimizations discussed in the previous paragraphs
explained this.

Looking at HTML objects, both AMP cache URLs and AMP
viewer URLs shows smaller variance than the other two. As
in our analysis of TTFB (Figure 5c), this can be explained by
the pages being served from a CDN, with more consistent
response times. Since loadtimes of the other objects with
AMP URLs show negligible values comparing to HTML ob-
jects, HTML mainly decide the shape of entire DOMLoaded

event graph although the gap between AMP versions and
non-AMP pages enlarged.

Zero loadtime of CSS objects in AMP viewer URLs is par-
ticularly interesting. We already discussed tiny CSS load-
time for all AMP versions on CSS objects in AMP pages
(Section 4.2). Furthermore, AMP viewer URLs have even
fewer CSS files (0 here) than the other AMP URLs as most of
the CSS files loaded before DOMLoaded events in other AMP
URLs are fonts, which AMP prevents from loading before
the DOMLoaded event.
In summary, by getting rid of objects blocking the DOM,

DOMLoaded timing can be greatly improved over 4x, from
3,179 ms (σ = 3, 599) for non-AMP URLs to 860 ms (σ = 532)
for AMP cache URLs and 907 ms for AMP viewer URLs.

4.4 Fewer DNS Resolutions
The significant reduction in the number of objects in an AMP
page should result, naturally, in fewer DNS resolutions being
made. In addition, as AMP caches many of a page associated
objects on the AMP CDN, we should see even fewer DNS
requests. To verify this, we analyze the HAR files generated
from visiting the AMP and non-AMP pages and count the
number of DNS resolutions made during a page load.

0 25 50 75 100 125 150 175
Number of Domains requested

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

non-AMP URLs
AMP cache URLs
AMP viewer URLs
AMP original URLs

Figure 10: The number of DNS resolutionsmade while
loading each URL.

Figure 10 shows the CDF of these results, which are con-
sistent with our analysis. We find large differences in the
number of DNS resolutions between AMP and non-AMP
pages. Concretely, we see a mean of 16 - 18 DNS (σ ≈ 10)
resolutions made for each AMP URLs, compared to a mean
of 52 DNS (σ = 33) resolutions made for a non-AMP URLs.

4.5 QUIC and AMP
Beyond the factors already discussed, the combination of
AMP CDN servers and the Chrome browser allows Google to
potentially take advantage of a performance-enhancing, user-
level transport protocol such as QUIC [6, 31]. While QUIC
is not strictly a feature of AMP, considering the variability
in network conditions to which mobile users are commonly
exposed, it can clearly contribute to its performance.
To find out the extent of QUIC protocol’s contribution

to AMP’s performance, we make use of the QUIC flag in
Chrome (chrome://flags/#enable-quic) enabling/disabling it
as needed. We visit the same URLs with QUIC-enabled and
QUIC-disable Chrome, and repeat this under different net-
work conditions, with different latencies and loss ratios. Fig-
ure 11 shows PLT of pages with both configurations and
two network settings – without added latency or loss, and
with 40 ms of additional latency and 1% of additional loss.
With no additional latency or loss (two left-most lines in the
plot), using QUIC (QUIC-on) yields a 1,983 ms of mean PLT
(σ = 1, 046), a minor improvement over the non-QUIC op-
tion with 2,082 ms (σ = 1, 073). Under more stressed network
conditions (two right-most lines in the plot), however, the
use of QUIC shows clear advantages over the non-QUIC set-
ting (QUIC-off), with a 1,000 ms gap in mean PLT (2,386 ms
(σ = 1, 218) with QUIC-on, 3,334 ms (σ = 1, 881) with QUIC-
off), consistent with the findings of Kakhki et al. [31].

103 104

PLT (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

latency40ms_loss1%_quicOff
latency40ms_loss1%_quicOn
nothing_added_quicOff
nothing_added_quicOn

Figure 11: PLT inmultiple configurations of QUIC and
network conditions. The x-axis is log scale.

5 PRE-RENDERINGWITH AMP CACHE
So far, we have analyzed AMP’s performance benefits by
comparing non-AMP pages with their AMP counterparts
using the AMP’s direct URL. Most users, however, would
probably access AMP pages using the AMP viewer URLs
embedded on web search results.
How users access AMP pages is key to their web expe-

rience given that pre-rendering of AMP pages is linked to
search results. Concretely, the resources on the first viewport
of AMP pages found on a search result are prefetched and
pre-rendered while the user is looking at the search result
page. If the user clicks on one of the pre-rendered pages, the
results show up in nearly instant-like loading.

The following paragraphs discuss our approach to captur-
ing the benefits and potential costs of pre-rendering.

5.1 Capturing the advantage of
pre-rendering

Pre-rendering in AMP is restricted to the first AMP page
on the search result, or one of the AMP pages in the AMP
carousel (as in Figure 1a) when the carousel is at the top
of the search results. If there are no AMP pages above the
fold, pre-rendering is done on the first AMP result appearing
if/when the user scrolls down. We verify this by inspection
of the HAR files, searching for any responses originated from
the endpoint cdn.ampproject.org, AMP CDN.

To understand the impact of AMP pre-rendering of search
results, we must correctly identify the top ranked AMP result
– the one that will be pre-rendered – to immediately load it
automatically, simulating a user selection, and capture the
full benefits of pre-rendering. For every keywords in our
dataset, then, we issue a search, identify the top AMP URL in
the result page, and load the associated AMP page capturing
the difference QoE metrics.
WPT supports tests with sequences of webpage requests

using its scripting functionality. We run a two-step script per

Pre-rendered
objects

(a) Har timeline of direct accessing to AMP viewer URLs.

(b) Har timeline of pre-rendered AMP viewer URLs.

Figure 12: HAR timeline of accessing to AMP viewer
URLs with and without pre-rendering.

keyword that only records the second step (the subsequent
page load) after the first step (the initial Google search).

Figure 12 uses an example AMP viewer URL6 to illustrates
the difference between the cascade of objects loaded with
and without pre-rendering. In the figure, each row represents
a request for an object, the request status code, the size of
the response (size 0 means an asynchronous request), and
the timing for processing the request. The vertical red line
shows the page loaded event (PLT) and we presents objects
loaded before this line7. This line does not show up in the
bottom figure since the base page has been loaded from
the pre-rendering step. A quick comparison of the top and
bottom figures shows that a large number of objects, included
the base page and image files, are not loaded when a user
access the first AMP viewer URL as they have already been
prefetched in the pre-rendering process. These prefetched
objects, are downloaded before PLT (Figure 12a).

5.2 Pre-rendering and QoE
We now look into timing of prefetching at search result pages
(Figure 13). We calculate each timing in the plot from the
beginning of the page loading and see that prefetching al-
ways begins after PLT of the search result page (i.e., once the
search results are presented to the user). Since the amount
6https://www.google.com/amp/s/www.liverpoolecho.co.uk/sport/football/
football-news/xherdan-shaqiri-philippe-coutinho-surprise-15645729.amp
7PLT of directly accessed page is 4,306 ms, and pre-rendered page is 476 ms

Figure 13: Timings of Google’ search result page. The
x-axis is shown in log scale.

of prefetched data is not trivial, the length of prefetching
time is significant as well. Even though there are a few other
objects loaded between the beginning and ending of prefetch-
ing, most of objects loaded within that interval come from
the AMP CDN. Additionally, we find that the moment the
connection to the AMP CDN is established (by requesting
preconnect.gif) can vary from the beginning of the page load-
ing to after the PLT.
To understand the impact that this may have on mobile

users’ QoE, we estimate the difference in PLT 8 when access-
ing AMP viewer URLs with and without pre-rendering. We
estimate the PLT for 50 prefetched/pre-rendered sites from
Google search result using our keyword sets.
Figure 14 compares this with the PLT time “direct”. As

expected, there is large difference between directly accessed
pages and pre-rendered pages. Mean PLT of pre-rendered
AMP viewer URLs is 833 ms (σ = 494), 2,057 ms faster than
direct’s PLT at 2,890 ms (σ = 1, 610). This difference explains
the nearly instantaneous rendering of the first AMP page
which, because of pre-rendering, translates simply in the
showing of a hidden, pre-rendered iframe.

5.3 Cost of AMP Prefetching
As one would expect, prefetching is not without a cost. To
estimate the potential overhead of prefetching, we re-visit
the search result pages of the selected 578 keywords, and
look at amount of AMP data prefetched and pre-rendered.

We measure the total bytes downloaded by AMP prefetch-
ing from web search result page with the keyword set. Fig-
ure 15 shows this as a CDF over all keyword searches. As
can be seen, there is a large jump on the top 10pct of web
search results. This means that for around 90% of search
result there are no AMP pages in the first viewport and, thus,
no data being prefetched from AMP CDN (without scrolling).

8SI is apparently better than PLT to show the impact of pre-rendering, but
we choose PLT since WPT’s multi step script does not correctly record SI.

https://www.google.com/amp/s/www.liverpoolecho.co.uk/sport/football/football-news/xherdan-shaqiri-philippe-coutinho-surprise-15645729.amp
https://www.google.com/amp/s/www.liverpoolecho.co.uk/sport/football/football-news/xherdan-shaqiri-philippe-coutinho-surprise-15645729.amp

103 104

PLT (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

pre-rendered
direct

Figure 14: PLT of 50 AMP pages for ’direct’ and ’pre-
rendered’.

104 105 106

Amount of data prefetched in the search result page (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

prefetch

Figure 15: Prefetched data Google’s search result page.
The x-axis is shown in log scale.

For the other 10% of search result, however, where AMP
results appear in the first viewport, pre-rendering incurs a
not negligible overhead. In average, looking at those web
search results, AMP prefetching consumes 1.4MB on data
(2.3MB with 95 percentile, and 6.1MB for the maximum).

While the fraction of search results with AMP entries in
the first viewport is a function of the particular set of key-
words use, we posit that the collection of keywords from
Google Trends provides a good estimate of the expected
overhead of pre-rendering for end users. We consider the
estimated overhead to be a lower-bound, as it does not in-
clude AMP resources in the next viewport although AMP
will prefetch those upon scrolling. A report from ITU [30]
let us eastimate the potential cost of this overehead to users.
For users in the top-20 countries in terms of price of mobile-
broadband, a 1.4MB extra data means $0.14 extra, on average
(Figure 16). This overhead may not be an issue if users com-
monly follow the first, prefeteched, link they found in Google
search. Based on average Click-Through-Rate for last one
year in [37], however, only 22.64% of the first result in the

Gu
in

ea
-B

iss
au

Ja
pa

n
M

au
rit

an
ia

Do
m

in
ica

n
Re

p.
Sw

az
ila

nd
Do

m
in

ica
Su

rin
am

e
Sa

ud
i A

ra
bi

a
Un

ite
d

St
at

es

M
ad

ag
as

ca
r

Lu
xe

m
bo

ur
g

De
nm

ar
k

Ho
nd

ur
as

Si
er

ra
 L

eo
ne

Ec
ua

do
r

Co
lo

m
bi

a
Sa

n
M

ar
in

o
Tr

in
id

ad
 &

 T
ob

ag
o

So
lo

m
on

 Is
la

nd
s

Br
un

ei
 D

ar
us

sa
la

m

countries

0.0

0.1

0.2

0.3

0.4

0.5

$

Figure 16: Cost perGoogle searchwithAMP in thefirst
viewport

search result page is directly accessed, rendering the other
78.36% of prefetched pages mere overhead.

6 IMPACT OF AMP’S FEATURES
AMP is a collection of various design features which con-
tributes to improving the mobile web experience. We focus
here on the differences between the three AMP URLs, par-
tially because many features in the AMP original URLs are
difficult to isolate (e.g., the number of domain requests and
total JavaScript object).
Figure 17 shows the performance gaps in terms of PLT

for 50 pages from the collected set used in Sec. 5. A horizon-
tal line across the graph shows, for a particular page (e.g.,
www.crowfishboxes.com), the PLT improvements respect to
the non-AMP version of the AMP original, AMP cache and
AMP pre-rendered versions. The differences between each
of these points captures the contributions of each version’s
set of features. The largest performance benefit comes with
AMP original page, with an average improvement of PLT of
9,657 ms compare to the baseline, non-AMP URLs. This im-
provement is the result of AMP’s numerous static methods
and its adoption of lazy loading.
AMP cache provide less impressive benefit, with 714 ms

of average PLT improvement over the AMP original URLs.
AMP cache’s reduction of image size and quality, a key func-
tionality of AMP cache, does not significantly improves PLT
since AMP only records the first viewport and there are likely
a few images.
As expected, pre-rendered AMP significantly enhances

PLT (with a 1,879 ms improvement of pre-rendered AMP
viewer URLs over the AMP cache URLs) since objects in the
first viewport of the AMP viewer URLs has already been
loaded when it was pre-rendered.

Figure 17: Impact of AMP’s features on PLT. The hori-
zontal line shows one particular page and the improve-
ment to PLT of each of its AMP version over its non-
AMP version.

7 DISCUSSION AND FUTUREWORK
Google has been promoting the adoption of AMP in a number
of ways. The company has introduced plans for new appli-
cation domains for AMP, such as Gmail and AMP Stories,
and has proposed its standardization [28, 40, 45]. Beyond
this, Google has been providing a number of incentives for
content providers through their search engine and their pop-
ular browser. For instance, the AMP carousels for top stories,
some of which can be seen in Figure 1a, place AMP pages
at the top of the search response page.9 Our preliminary
analysis of AMP adoption rate suggests that the incentives
are working.

Between February and May of 2018, we applied the same
data collection approach we used to gathered our corpus
of AMP pages. Using the same set of 578 Google trend key-
words 2017, the most recent year available, we searched for
keywords and count the number of AMP-adopted content
providers revealed by our crawler.
Figure 18 plots the changes in the number of results per

month using the number found in February, 468, as baseline.
Other than a small dip in March (464), the figure shows a
growing adoption trend with 514 and 525 content providers
for April and May, respectively. While this is only an approx-
imation, based on a subset of popular keywords that changes
over time, the growing adoption trend seems clear.

7.1 Criticism around AMP
AMPhas also attracted a significant degree of controversy [14,
23, 29], mainly driven by concerns about Google’s influence,
complications with attribution of content and the overhead
of pre-fetching. A common concern is Google’s prioritization
9Other browsers beyond Chrome have adopted the AMP carousel, including
Firefox (https://addons.mozilla.org/en-US/firefox/addon/amp-browser/).

February March April May
Month

0

10

20

30

40

50

60

Di
ffe

re
nc

e
in

 th
e

nu
m

be
r o

f c
on

te
nt

 p
ro

vi
de

rs
 a

do
pt

ed
 A

M
P

468 -4

+ 46

+ 57

The number of domains in Feb.

0

200

400

600

800

1000

1200

1400

1600

1800

Th
e

nu
m

be
r o

f c
ol

le
ct

ed
 U

RL
s

Figure 18: AMP adopting trend for 4 months.

of AMP results. AMP carousels, the visible prioritization, is
already an important thing to consider for content providers,
as we mentioned. Beyond this, there are also some concerns
about the relationship between loading speed and the rank-
ing of search results. Google has announced Google Speed
Update [48], saying that Google will use page speed inmobile
search ranking. There is no direct evidence of the relation-
ship between this and AMP, but it would seem “natural” that
AMP’s improved performance would result in higher page
rankings.
Another issue that has been raised is the fact that, by

serving AMP pages to the users through AMP viewer URLs,
user traffic stays within the Google’s ecosystem. This, com-
bined with the resulting “clean look” of AMP pages from
the restricted format it enforces, also creates some confu-
sion with respect to content attribution. Google has tried to
help attribute content to the original sources [15] by adding
the source URL in the AMP viewer page and by eventually
matching URLs to the original source [44].
Finally, as we show in Sec. 5, AMP prefetching and pre-

rendering results in some additional data (and power) use
with each search. The average 1.4 MB of additional data per
search that is used for pre-rendering an AMP page that the
user may not visit is not trivial overhead for certain users
with limited data plans. Most mobile users search a variety
of things through search engines unaware of these hidden
costs. Leaving pre-rendering as an option for users would
still provide fast-enough user experience as we have shown,
even if at the cost of an ‘instant’ web browsing experience.

7.2 Future work
There are a number of possible directions for future work.
For starters, we conducted our tests for AMP with a single
configuration (i.e., one location, using one type of connection,
on a single device, etc.). Different network conditions may
yield different results on either the performance impact of

https://addons.mozilla.org/en-US/firefox/addon/amp-browser/

AMP and/or the relative contributions of its features. For
instance, a more challenged access link may amplify the
benefits of AMP (e.g., fewer DNS resolutions) and QUIC.

In addition, our analysis relies on proxies of actual Quality
of Experience, such as PLT, TTFB, and SI. More qualitative
research on AMP user experience may help improve our
understanding of the benefits of the different features of
AMP. Also, expanding our definition of “users” to include
adopters and developers could help us understand some the
controversy around AMP.

Last, it may be interesting to also compare AMP to other
techniques aimed at improving web browsing QoE for mobile
users to draw more general lessons on how to improve the
mobile web browsing experience.

8 RELATEDWORK
There is a large body of prior work on measuring and im-
proving mobile web performance. We review some of these
efforts in the following paragraphs.

Client-side optimization.Content prefetching, pre-rendering
and speculative loading systems can reduce the impact of
high latency in networks on web QoE [26, 35, 50]. Predicting
user browsing behavior is, however, challenging and can
lead to wasted energy and data usage [38]. Google adopted
prefetching and pre-rendering as a feature in Google Chrome
to improve user-perceived web performance [5]. Webpages
with pre-render link tags triggers pre-rendering, where the
browser prepare a (hidden) page ahead of time so that the
content can be presented to users as soon as they click the
link. This feature, adopted by Chrome since 2011 10, has an
important role in making AMP’s seemingly instantaneous
page loading possible. From our analysis, AMP appears to
prefetch only one – the top – AMP page on the assumption
that users most commonly follow on the first item listed in a
search result page.

Proxy-based acceleration. A number of research pro-
posals and products have aimed to improve mobile web per-
formance by dividing the load process between the client
and a remote proxy server [21, 33, 34, 41, 47]. For instance,
Amazon Silk and Opera Mini are web browsers for mobile
devices with server-aided web speed boosting [13, 18]. While
these approaches raise concerns on security and privacy, by
resolving dependencies at a wired-connected proxy, they are
able to reduce clients’ PLT. AMP performance benefits from
its CDNs in a similar manner.

Platform solutions. Beyond AMP, other projects and
proposals try to alleviate the impact of network issues by
altering how pages are written and served. For instance,
companies with influential platforms have put significant
effort into boosting performance of mobile web browsing

10This has been disabled by 2017.

in their platforms, particularly news, to capture user traffic.
Apple has provided Apple News [9] for their mobile devices,
and Facebookmade Instant Articles [10] available through the
Facebook apps since 2012. While these options can greatly
improve the mobile experience, their benefits are confined
to users of their particular apps.

Network optimizations. HTTP/2 [11] and SPDY [7] re-
duce PLT by allowing client browsers to multiplex all re-
quests to an origin on a single TCP connection. HTTP/2 also
allows servers to speculatively “push” objects before they are
requested in order to improve loading time. QUIC, a protocol
succeeding SPDY, is widely deployed and used by Google.
While not strictly AMP, AMP leverages QUIC when possible.

9 CONCLUSION
We characterized Accelerated Mobile Pages (AMP), one of
Google’s most active and controversial efforts to enhance
the mobile browsing experience. We found that deploying
AMP greatly reduces the complexity of web pages, in large
part thanks to restrictions set forth by the AMP standards,
and that this reduction does translate in significant perfor-
mance improvement on mobile users’ quality of experience.
We showed that the pre-rendering of AMP pages in Google
search results is a key contributor to AMP’s responsiveness,
but that this may come with a significant overhead on mobile
data consumed, depending on the rate at which prerendering
is use and the frequency with which users’ visit the preren-
dered sites. The controversy surrounding AMP and its impact
on the health of theWeb is ongoing. Our work contributes an
independent analysis of AMP’s performance benefit which,
we acknowledge, is just one of the many factors determining
mobile users’ web experience.

ACKNOWLEDGMENTS
We thank our shepherd Aruna Balasubramanian and the
anonymous reviewers for their thoughtful feedback, and the
AquaLab group members for their support. We are partic-
ularly grateful to Malte Ubl, creator and tech lead of the
AMP project at Google, whose detailed comments have sig-
nificantly improved this work. This research was partially
supported by NSF grant CNS-1619317.

REFERENCES
[1] 2004. Selenium. https://www.seleniumhq.org.
[2] 2006. Speed Test. http://www.speedtest.net/.
[3] 2008. Network Diagnostic Tool. http://www.measurementlab.net/

run-ndt/.
[4] 2008. WepPageTest. https://www.webpagetest.org.
[5] 2011. Chrome Prerendering. https://www.chromium.org/developers/

design-documents/prerender.
[6] 2012. QUIC, a multiplexed stream transport over UDP. https://www.

chromium.org/quic.

https://www.seleniumhq.org
http://www.speedtest.net/
http://www.measurementlab.net/run-ndt/
http://www.measurementlab.net/run-ndt/
https://www.webpagetest.org
https://www.chromium.org/developers/design-documents/prerender
https://www.chromium.org/developers/design-documents/prerender
https://www.chromium.org/quic
https://www.chromium.org/quic

[7] 2012. SPDY Protocol - Draft 3. https://www.chromium.org/spdy/
spdy-protocol/spdy-protocol-draft3.

[8] 2012. SpeedIndex. https://tinyurl.com/c77w9j4.
[9] 2015. Apple News. https://www.apple.com/news/.
[10] 2015. Facebook Instant Articles. https://instantarticles.fb.com/.
[11] 2015. Hypertext Transfer Protocol Version 2 (HTTP/2). https://tools.

ietf.org/html/rfc7540.
[12] 2017. Cloudflare Ampersand. https://www.cloudflare.com/

website-optimization/ampersand/.
[13] Amazon. 2017. What is Amazon Silk? https://tinyurl.com/jhjgnxp.
[14] Amelia Andersdotter, Daniel Appelquist, Alice Bartlett, Andrew Betts,

Ada Rose Cannon, Kaelig Deloumeau-Prigent, Terence Eden, Alberto
Elias, Patrick Hamann, Jeremy Keith, Zach Leatherman, Ethan Mar-
cotte, MarkMcDonnell, RogierMulhuijzen,MarkNottingham, Natasha
Rooney, Yuya Saito, Jed Schmidt, Steve Souders, Léonie Watson, and
Estelle Weyl. 2018. A letter about Google AMP. http://ampletter.org.

[15] Paul Bakaus. 2017. Why AMP Caches exist. https://tinyurl.com/
yaxe7a5l.

[16] David Besbris. 2015. Introducing the Accelerated Mobile Pages Project,
for a faster, open mobile web. (October 2015). Google: Official Blog.

[17] Enrico Bocchi, Luc de Cicco, and Dario Rossi. 2016. Measuring the
Quality of Experience of Web users. SIGCOMM Comput. Commun. Rev.
46, 4 (2016). October.

[18] Andreas Bovens. 2015. Opera Browsers, Modes & Engines. https:
//dev.opera.com/articles/browsers-modes-engines/.

[19] Jake Brutlag. 2009. Speed matters for Google web search.
[20] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas Sekar. 2011.

Understanding Website Complexity: Measurements, Metrics, and Im-
plications. In Proc. of IMC.

[21] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V. Madhyastha,
and Vyas Sekar. 2017. Klotski: Reprioritizing Web Content to Improve
User Experience on Mobile Devices. In Proc. of ACM SIGCOMM.

[22] Christine Chun. 2018. Google AMP yields 600% increase on mobile
site page load speed. https://tinyurl.com/y7kw3am5.

[23] Corbin Davenport. 2018. Opinion: Google AMP is still confusing, and
it’s not getting any better. https://tinyurl.com/yc9aax7j.

[24] Eric Enge. 2018. AMP-lify Your Digital Marketing in 2018. https:
//tinyurl.com/yad5e7oq.

[25] Ericsson. 2016. Ericssonmobility report. https://tinyurl.com/gmnezg6.
[26] Li Fan, Pei Cao, Wei Lin, , and Quinn Jacobson. [n. d.]. Web Prefetching

Between Low-Bandwidth Clients and Proxies: Potential and Perfor-
mance.

[27] Alex Fischer. 2017. What’s in an AMP URL. https://developers.
googleblog.com/2017/02/whats-in-amp-url.html.

[28] Rudy Galfi. 2018. AMP stories: Bringing visual storytelling to the open
web. https://tinyurl.com/yckkdouw.

[29] Scott Gilbertson. 2017. Kill Google AMP before it kills the web. https:
//tinyurl.com/kv4djy7.

[30] ITU. 2016. Measuring the Information Society Report 2016. Technical
Report. International Telecommunication Union.

[31] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-
Rotaru, and Alan Mislove. 2017. Taking a Long Look at QUIC. In Proc.
of IMC.

[32] Javad Nejati and Aruna Balasubramanian. 2016. An In-Depth Study of
Mobile Browser Performance. In Proc. WWW.

[33] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan.
2016. Polaris: Faster Page Loads Using Fine-grained Dependency
Tracking. In Proc. of USENIX NSDI.

[34] Ravi Netravali, ANirudh Sivaraman, Somak Das, Ameesh Goyal, Keith
Winstein, James Mickens, and Hari Balakrishnan. 2015. Mahimahi:
Accurate Record-and-Replay for HTTP. In Proc. USENIX ATC.

[35] Venkata N. Padmanabhan and Jeffrey C. Mogul. 1996. Using Predictive
Prefetching to Improve World Wide Web Latency. In Proc. of ACM
SIGCOMM.

[36] Feng Qian, Subhabrata Sen, and Olivier Spatscheck. 2014. Charac-
terizing resource usage for mobile web browsing. In Proc.. of ACM
MobiSys.

[37] Advanced Web Ranking. 2018. CTR study. https://www.
advancedwebranking.com/ctrstudy/.

[38] Lenin Ravindranath, Sharad Agarwal, Jitendra Padhye, and Christo-
pher Riederer. 2013. Give in to Procrastination and Stop Prefetching.
In Proc. of HotNets.

[39] Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Har-
sha V. Madhyastha. 2017. VROOM: Accelerating the Mobile Web with
Server-Aided Dependency Resolution. In Proc. of ACM SIGCOMM.

[40] Aakash Sahney. 2018. Bringing the power of AMP to Gmail. https:
//tinyurl.com/y9yv2trk.

[41] Ashiwan Sivakumar, Shankaranarayanan Puzhavakath Narayanan,
Vijay Gopalakrishnan, Seungjoon Lee, Sanjay Rao, and Subhabrata
Sen. 2014. PARCEL: Proxy Assisted BRowsing in Cellular Networks
for Energy and Latency Reduction. In Proc. ACM CoNEXT.

[42] Joel Sommers. 2018. On the Characteristics of Language Tags on the
Web. In Proc. of PAM.

[43] James Titcomb. 2016. Mobile web usage overtakes desktop for first
time. https://tinyurl.com/zsuasva.

[44] Malte Ubl. 2018. Improving URLs for AMP pages. https://tinyurl.com/
yagguvs4.

[45] Malte Ubl. 2018. Standardizing lessons learned from AMP. https:
//tinyurl.com/y8qda2o4.

[46] UK Office of Communication (Ofcom). 2016. The International Com-
munication Market Report. Technical Report. Ofcom.

[47] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016.
Speeding UpWeb Page Loads with Shandian. In Proc. of USENIX NSDI.

[48] Zhiheng Wang. 2018. Using page speed in mobile search ranking.
https://tinyurl.com/y8klhhg4.

[49] ZhenWang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. 2011.
Why are Web Browsers Slow on Smartphones?. In Proc. of HotMobile.

[50] ZhenWang, Felix Xiazhou Lin, Lin Zhong, and Mansoor Chishtie. 2012.
How Far Can Client-Only Solutions Go for Mobile Browser Speed?. In
Proc. WWW.

https://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3
https://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3
https://tinyurl.com/c77w9j4
https://www.apple.com/news/
https://instantarticles.fb.com/
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://www.cloudflare.com/website-optimization/ampersand/
https://www.cloudflare.com/website-optimization/ampersand/
https://tinyurl.com/jhjgnxp
http://ampletter.org
https://tinyurl.com/yaxe7a5l
https://tinyurl.com/yaxe7a5l
https://dev.opera.com/articles/browsers-modes-engines/
https://dev.opera.com/articles/browsers-modes-engines/
https://tinyurl.com/y7kw3am5
https://tinyurl.com/yc9aax7j
https://tinyurl.com/yad5e7oq
https://tinyurl.com/yad5e7oq
https://tinyurl.com/gmnezg6
https://developers.googleblog.com/2017/02/whats-in-amp-url.html
https://developers.googleblog.com/2017/02/whats-in-amp-url.html
https://tinyurl.com/yckkdouw
https://tinyurl.com/kv4djy7
https://tinyurl.com/kv4djy7
https://www.advancedwebranking.com/ctrstudy/
https://www.advancedwebranking.com/ctrstudy/
https://tinyurl.com/y9yv2trk
https://tinyurl.com/y9yv2trk
https://tinyurl.com/zsuasva
https://tinyurl.com/yagguvs4
https://tinyurl.com/yagguvs4
https://tinyurl.com/y8qda2o4
https://tinyurl.com/y8qda2o4
https://tinyurl.com/y8klhhg4

	Abstract
	1 Introduction
	2 AMP Overview
	2.1 AMP and its URLs
	2.2 How AMP works

	3 Methodology
	3.1 Collecting a set of AMP pages
	3.2 Defining a baseline for comparison
	3.3 Testbed
	3.4 Web QoE Metrics
	3.5 Network Environment

	4 Performance of AMP
	4.1 Overall performance
	4.2 Website Complexity
	4.3 Removal of objects blocking the DOM
	4.4 Fewer DNS Resolutions
	4.5 QUIC and AMP

	5 Pre-rendering with AMP cache
	5.1 Capturing the advantage of pre-rendering
	5.2 Pre-rendering and QoE
	5.3 Cost of AMP Prefetching

	6 Impact of AMP's features
	7 Discussion and Future Work
	7.1 Criticism around AMP
	7.2 Future work

	8 Related Work
	9 Conclusion
	References

