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Abstract—Network positioning systems provide an important Finally, we collect traceroute measurements between BitTo
service to large-scale P2P systems, potentially enablindients rent peers for diagnosing network positioning performance
to achieve higher performance, reduce cross-ISP traffic and  Thig paner makes the following contributions. First, we
improve the robustness of the system to failures. Becauseates . . .
representative of this environment are generally unavailale, and fmd .t_hat the accuracy of the network coordinate systems is
there is no platform suited for experimentation at the appropriate ~ Significantly worse when used at the edge of the network than
scale, network positioning systems have been commonly inggl when evaluated from the perspective of a research testbed.
mented and evaluated in simulation and on research testbed$he  Second, we show that this inaccuracy leads to significant
performance of network positioning remains an open questio for loss in performance in the case of low-latency distributed
large deployments at the edges of the network. hash tabl DHT hich twork dinates t id

This paper evaluates how four key classes of network po- a.s ables ( . S). W Ich use network coordinates o guide
sitioning systems fare when deployed at scale and measuredn€ighbor selection. Third, we explore the root causes airgrr
in P2P systems where they are used. Using 2 billion network in network positioning in the P2P environment at an Internet
measurements gathered from more than 43,000 IP addressesscale, based on latency and topology measurements.
probing over 8 million other IPs worldwide, we show that g facilitate new research in network positioning, we will

network positioning exhibits noticeably worse performane than . . . .
previously reported in studies conducted on research tesdus. make our anonymized dataset publicly available. This data

To explain this result, we identify several key properties this CONSists of approximately 2 billion latency sam_p_les, 3Qiamil
environment that call into question fundamental assumptims traceroute measurements and hundreds of millions of n&twor

driving network positioning research. positions gathered during a two-week period.
The remainder of the paper is organized as follows. In
. INTRODUCTION the next section, we describe the four classes of network

o positioning approaches that we evaluate in this study. Hec.
Network  positioning systems have been proposed aspgvides details on our dataset and how we use it to evaluate
scalable way to determine the relative location of hosts ﬁbsitioning performance_ We ana|yze the accuracy of nédwor

the network, measured in terms of latency or available bargbsitioning and its impact on performance in Sec. IV, then
width [6]. Network positioning information has been used igxplore sources of their errors in Sec. V.

a growing number of large-scale P2P systems [1], [3], []], [9
that run on hosts located at the edges of the network (e.g., Il. BACKGROUND
on desktops or appliances behind NAT boxes on residentialThere is a rich body of work that addresses the design and
links). Because traces representative of this environraest implementation of network positioning systems [5], [12]3],
generally unavailable, and there is no platform suited f@t9], [20]. In this section, we describe four classes of rotw
experimentation at the appropriate scale, the correspgndpositioning systems that we cover in this study.
performance of network positioning remains an open questio |andmark-based systerastimate network distances to par-
This paper evaluates how four key classes of netwotkipating hosts by embedding their network locations in a
positioning systems fare when deployed and measured at thelti-dimensional Euclidean space based on the hosts’ dis-
scale of real, popular P2P systems. For this study, we gadhetances to a set of landmarks. The Global Network Positioning
alarge, representative dataset based on informationtegbloy (GNP) system [13] provides efficient implementation of this
hosts participating in the Vuze BitTorrent system [22] thgh  approachLandmark-free systemm contrast, fully decentral-
an extension to this client, currently installed by hundreél ize the computation of network locations encoded in a low-
thousands of peers. dimensional coordinate space [5], [18]. Among these system
The Vuze BitTorrent client provides operational deploythe Vivaldi network positioning system [5] is the most wigel
ments of Vivaldi [5], Vivaldi version 2 (Pyxida) [11] and deployed.
CRP [19], in addition to a rich interface for accessing peers Despite the success of these systems, recent studies have
positioning information. We sample Vivaldi network coor-called into question the usefulness of network coordin2tgls
dinates and CRP network positions, and perform netwoHor example, Wong et al. [24] note that embedding errors from
measurements to evaluate their accuracy. We additionafigtwork coordinates always leads to suboptimal peer safect
use the latency measurements between hosts to understamdiinstead propose Meridian, a structured approacliréat
Meridian [24] and GNP [13] performance in this environmenmeasurement
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Direct measurement provides high accuracy, but even str&#@y. 1. CDFs of latencies from Fig. 2. CDF of average latencies
tured approaches to latency measurement can incur sigdifierent measurement platforms for vantage points when idle and ac-
. t head for | t The CDN-b d Rel tﬁemnog scale). Our measurement tively downloading. The distributions
|can_ _Ov_er ead T1or large sys ems_. e -base ea_ Gdy exclusively between peers in are nearly identical, suggesting that
Positioning (CRP) approach [19] is based on the observatiaixe (labeled P2P) exhibits double downloading behavior has a minimal
that relative network positioning is sufficient for many apthe median latency “in the wild” impact on observed latencies.

L . .(gabeled PL-to-P2P).
plications [16] and proposes a low-cost technique to prvi
this service byreusing measurementgerformed by content

distribution networks. During the observation period our collaborative measure-

ment infrastructure collected over 100 million samplesrfro
I11. DATASET AND METHODOLOGY peers per day. The dataset used in this paper consists of more

Our study focuses on measurements between P2P %;Iil 1.41 billion Vivaldi samples, 60 million CRP ratios, 2
S

systems primarily located at the edges of the network, wh
all previous evaluations of network positioning were based
on data gathered between and from PlanetLab nodes.
present results based on measurements collected from
than 40,000 IPs broadly distributed worldwide, with betwee ™
6,500 and 7,100 IPs online per day. Finally, we collect traceroute measurements to a random
Table | summarizes key characteristics of the vantage:poiﬁflst of p,eers_cqnnected to each measuren_]ent host. We use
. : . the host's built-int r acer out e command with the default
used in this study. For comparison, note that the number of

. : ) . settings, and at most one measurement is performed at a time.
vantage points online during the 15-day period of our stedy 1.~ . .
N . L uring the measurement period, we collected more than 30
five times greater thaall of the vantage points participating

in DIMES [17] since 2004. Our users are located in morm|II|on path measurements starting at more than 70,000 first

e
than an order of magnitude more BGP prefixes than thoggp router IPs.
available from PlanetLab [15]. Finally, note that because tB. Latency Matrix

peers in our study are often located behind middleboxes atrpe ping measurements that we collect can be used directly

the edges of the network, they allow us to measure portiop eyauating the live performance of CRP and Vivaldi. To

of the Internet not visible when using traditional measweet pqaden the scope of our study we construct a matrix of
techniques [2]. The following paragraphs describe ours#ita),iencies, enabling us to simulate performance for the GNP
and how we use it to evaluate existing network positioning,+ Meridian systems in this context.

approaches. For a more detailed description, see the assibci 14 gyaluate the limits of network positioning performance

technical report [4]. in terms of intrinsic latencies between routable addressks,

A Dataset we construct a latency matrix of source and destination
' routable BGP prefixeaccording to [21]), using the minimum
The dataset used in this study was gathered from usgfsserved RTT for each matrix element. Because this approach

running the Ono plugin [3] for the Vuze BitTorrent client.sj|| yields a sparse 6380x72343 matrix, we use the squdre su

To compare each technique’s distance estimate with groundtrix and iteratively remove rows and columns that contain

truth, our software performs latency measurements betwafg |argest number of empty elements until a sufficientlysgen

connected peers. Our software also issues tracerouteptobes, pmatrix remains. There is a sharp drop-off in the number
connected hosts for discovering topological informati®he f glements in am%-full matrix asn approaches 100, so we
data used in this study was collected during the period oé Jufise, = 95, resulting in a 479x479 matrix. The rows represent

10 to June 25, 2008 and will be made publicly available in agps in North America, Europe, Asia (including the Middle

ion total latency samples and 33 million traceroute mea
rements. The Vivaldi samples were recorded from 43,674
suree IPs; the CRP ratios are derived both from a host's
n18?§| ratios and from those gathered by issuing remote DNS
ookups, covering more than 3.3 million distinct IPs.

anonymized format. East), South America and Oceania.
A distinctive aspect of our measurement approach is that
it records measurements at the scale and in the environment IV. PERFORMANCE FROMEND SYSTEMS

where network coordinates are intended to be used. Thesén this section, we evaluate the accuracy of network posi-
latencies (P2P), shown in Fig. 1, are generally much largiéwning systems in a P2P environment and their impact on the
than those from MIT King [5] and PlanetLab (PL). In factperformance of an example application that uses them.

the median latency in our dataset is twice as large as raporte For evaluating GNP performance, we use the authors’
by the study from Ledlie et al. [11], which used PlanetLabimulation implementation. The results are based on thneg r
nodes to probe Vuze P2P users (PL-to-P2P). of the simulation, each using a randomly chosen set of 15



landmarks, 464 targets and an 8-dimensional coordinatespahapes are similar. As such, we believe the impact of P2P
Our Meridian simulation settings are proportional to those traffic is not significant.

the original evaluation, with 379 randomly selected Mexdi

nodes, 100 target nodes, 16 nodes per ring and 9 rings Eerimpact on Applications

node. Our results are based on four simulation runs, each o

which performs 25,000 latency queries Eelative error in latencies alone do not necessarily ptedic

the quality of network positioning as experienced by the.use
We now focus on whether the errors we reported in the
previous paragraphs do indeed negatively affect applinati
We begin our analysis by evaluating the accuracy of GNferformance.
and of the Vuze Vivaldi implementations in terms of errors Thijs section focuses on the case of distributed hash tables
in predicted latency. Meridian and CRP are omitted he{®HTs), which can use nearby hosts to reduce the time to
because they do not provide quantitative latency predistio perform read and write operations. In this case, a posit@ni
Figure 3 presents the cumulative distribution function €D system need only guarantee that nodes closer to the local hos
of errors on a semilog scale, where each point represents I‘%@e smaller estimated distances than those farther away.
absolute value of thaverageerror from one measurement one way to measure this is the relative application-level
host. We find that GNP has lower measurement error (medigghaity (RALP) metric initially proposed by Pietzuch et
is 59.8ms) than the original Vivaldi implementation (lal 3 [14]. This metric measures the latency penalty incurred
V1, median error is¢ 150 ms), partially due to GNP's use ofpy applications using network positioning to select thesekt
fixed, dedicated landmarks. Somewhat surprisingly, Leeflie x peers, compared to optimal selection.
al’s Vivaldi implementation (labeled V2) has slightly d&r 15 calculate RALP for a host, we first create a set of

errors in latency (median error i 165ms) than GNP and 0,5 req latencies;, between this host and a set of other
V1; however, we show in the next paragraph that its relatiyg,sis ordered according to “ground-truth” ping measurese
error is in fact smaller. _ We then create a corresponding set of measured laterigjes,
To compute relative errors, we first calculate the absolufggered by the hosts’ proximity according to the positignin
value of the relative error between Vivaldi's estimateciteny systems. For Meridian and CRP, which do not predict dis-
and the ping latency for each sample, then find the average&fices, we order the closest peers they found based on their
these errors for each client running our software. In Figvé, qeasured latencies.
plot a CDF of these values; each point represents the averagye then find the average RALP for each measurement node
relative error for a particular client. For Vivaldi V1, theeglian usingl/n- 37 (pi — g:)/gs, wheren is the number of nodes
relative error for each node is approximately 74%, whereas theing measuzr:eld a:nidisl the“index in the ordered sets.

same for V2 is 55%. Both errors are significantly higher than Figure 5 shows a CDF of the average RALP values for each
the 26% median relative error reported in studies based QB <\ .ement node when comparing the Meridian-selected
PlanetLab nodes [11]. node, the best 10 CRP-selected nodes and the 10 nodes ordered

_Finally, because Meridian and CRP do not predict distanceg, egtimated distance for the other positioning systems.
Fig. 4 plots the relative error for the closest peers founalby Note that the vast majority of RALP values for coordinate

the network positioning systems studied. Meridian_ finds t_@ stems is greater than 1, indicating that errors in the-posi
closest peer correctly approximately 20% of the time whi foning system lead to significant loss in performance far th

CRP can locate the closest peer more than 70% of the timBHT that uses it. For example, the median RALP for Vivaldi

V2 when assessing the closest 10 nodes is 26.9, meaning
that for half the peers in our study, the average latency to
It is possible for client P2P traffic to interfere with theVivaldi-driven peers is about 27 times worse than optimal.
latency measurements. For instance, queuing delays intead By comparison, Ledlie et al. [11] saw median RALP values
by natural P2P traffic could significantly increase delays imear 0.4 when measuring from PlanetLab. Also note that the
latency measurements and alter the perceived structuteeof median RALP in our study is much larger than thecrage
Internet latency space. To evaluate the impact of this t¢raffper-peerrelative errors shown in the previous section — this
we compare the set of latencies measured when our clients @aceurs because the set of nearest nodes according to Vivaldi
actively downloading with those collected when they @lle often have significantly larger latency than the “grounatkit
(i.e., having upload/download rates 4 KB/s or less). nearest nodes. Finally, Meridian and CRP exhibit similagt an
Figure 2 shows the CDF of latencies for these two semparatively good performance, showing that on average
where each point represents tinerageof latencies from one these systems locate close nodes most of the time.
source to all of its destinations. To ensure enough diweisit Based on the empirical results from our study, existing
the latency measurements, we include only hosts that perfonetwork positioning systems not only exhibit large errars i
at least 50 measurements. While the idle latencies are poedictions, but those errors significantly impact appica
surprisingly smaller than those in the complete dataset, therformance in large-scale P2P environments. In the next
difference in median latencies is less than 10% and the cusextion, we explore why this is the case.

A. Accuracy

B. Latencies in P2P environments
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Fig. 3. Absolute value of errors between es-Fig. 4. Absolute value ofelative errors between Fig. 5. Relative application-level penalty for
timated and measured latencies, in millisecondsestimated and measured latencies. Vivaldi V1 andusing network positioning. The vast majority of
The median error for GNP is about 60 ms whereasV2 exhibit median errors that are triple or double values are greater than one and the median values
the same for Vivaldi V1 and V2 are 150 and previously reported; however, these errors areindicate order-of-magnitude loss in performance.
165 ms, respectively. similar to those in GNP.
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Fig. 6. Plot indicating portion of variance capturedFig. 7. Map of severity of TIVs in ) )
by each principal component. The first five componentsur measured latency space, where row$™ig. 8. CDF of portion of end-to-end latency contained
capture only a small portion (20%) of the total varianceand columns from the same continentin each quartile of the IP-level path between endpoints.
are grouped together. A white point
represents the most severe TIV.

V. SOURCES OFERROR descending order of the amount of variance they capture. The

Many authors have pointed out issues that impair accuraf&g/ure contains curves for)(the percent of théotal variance

in network positioning systems, including churn, coortina® pt!”ed b_y each componerRefcent left y-axis), (i) t_he
. . . T : relative variance captured by each component normalized by
drift, corruption, latency variance and intrinsic errovghile

solutions have been proposed to address the first three prﬂ})e- value for the first componerRélative, right y-axis) and

lems [7], [10], [11], this section focuses on variance anr@alrzktTees(;l{[?;;agﬁvig?gfcﬁ?rﬁﬁllja:t?\(/jebge?gecninlg?nfeanxtiz )W ith
intrinsic errors in latency prediction, as they represamnt-f q Y '

damental challenges for latency-based approaches to rietwo Traditionally, one uses the first two curves to identify the

positioning. inherent dimensionality of the space by locating the “knee”
in the curve. While the knee appears to occur around the 4th
A. Network Embedding or 5th component, these first few components capture only

& small amount (20%) of the variance. Although the values
of hosts, early work on network positioning has relied ofjuickly diminish for other components, the curve exhibits a

the use of principal component analysis (PCA) to estimal@d tail. For instance, 9 components are required to captur
the number of linear combinations of elements sufficient fo° 70 ©f the variance and at least 37 components are required
capture most of its variance (e.g., [20]). If the vast mayori {© capture 50% of the variance.
of the variance is modeled by a few principal components, Previous work in PlanetLab has shown much higher vari-
then a small number of dimensions may be sufficient #nce captured by small numbers of coordinates, which can be
use in embedding network distances in an Euclidean spaegplained by the platform’s relatively small number of nsde
This analysis has been previously used to select 2, 4 odoéated near the “core” of the Internet. To hint at the effact
dimensions [5], [11], [20]. evaluating a smaller number of networks, we further reduced
We perform the same PCA analysis on the latency matriur matrix to 274x274 routable prefixes (99% full). After
described in Sec. lll. Fig. 6 presents a scree plot of thdivela running PCA on this matrix, the amount of variance captured
variance captured by each of the first 30 components, iy the first componenbearly doublesand the variance for

Starting from a matrix of network latencies for a collectio



the first 5 components increases by 35%. This suggests tqumartile) has a large number of values close to and larger tha
effects: analysis on matrices formed by limited vantaga{soi 1. This demonstrates the variance in latencies along these fi
underestimates the complexity of the Internet delay spa@#d last miles, where measurements to individual hops along

however, even with the smaller matrix based on latencidse

path can yield latencies that are close to or larger than

from the “edge” of the network, the majority of the variancéhe total end-to-end latency (as measured by probes to ghe la
is not captured by the first few components. We posit thhbp). In fact, more than 10% of the 1st quartile samples have
this additional complexity is one of the primary reasons why ratio greater than 1. While Vivaldi uses “height” to accbun

network coordinates yield such large errors at scale.

for (first- and) last-mile links [5], this analysis suggestat a

single parameter is insufficient due to the large and vagiabl

B. Triangle Inequalities

Triangle inequality violations (TIVs) in a delay space occu
when the latency between hostsand B is larger than the
sum of the latency fromd to C andC to B (A # B # C). (1]
This is caused by factors such as network topology and
routing policies. Wang et al. [23] demonstrate that TIVs2]
can significantly reduce the accuracy of network positignin
systems. 13]

We performed a TIV analysis on our dataset and found
that over 13% of the triangles had TIVs (affecting over,
99.5% of the source/destination pairs). Figure 7 visualthe
severity of these TIVs, where lighter colored points intéca [5]
more severe TIVs and rows/columns belonging to the sa
continent are grouped together (as done by Wang et al. [Zg}).
The figure shows that some networks experience few TIVs
(dark lines), some experience a large number (light lines) a (7]
many experience a significant number in non-uniform pastern g

Compared to TIV rates reported in an analysis of datasets
from Tang and Crovella [20], TIVs rates in the P2P environ!®!
ment we studied are between 100% and 400% higher, and the
number of source/destination pairs experiencing TIVs in oii0]
dataset (nearly 100%) is significantly greater than the 83%
reported by Ledlie et al. [11]. These patterns for TIVs andy)
their severity hints at the challenges in accounting for 1V
in coordinate systems. (12]
C. First- and Last-Mile Issues [13]

It is well known that last-mile links often have poorer

: . : . . [14]
quality than the well provisioned links in transit networkéie
problem is particularly acute in typical P2P settings. Hogve [15]
most of today’s network positioning systems either ignare &l
naively account for this effect.

To understand the risks of ignoring this issue in a latencit]
based network positioning system for a P2P environmeﬂtg]
Fig. 8 plots CDFs of the portion of end-to-end latency (log
scale) along quartiles of the IP-level path between the mea-
sured hosts, using the per-hop latencies from our tracerolt
measurements. [20]

If the latency were evenly distributed among IP hops along
a path, the curves would center aroune- 0.25. In contrast, (21]
the first quartile (which is very likely to contain the entfiest |23
mile) stands out from the rest, containing disproportiehat
large fractions of the total end-to-end latency. For ins¢an
when looking at the median values, the 1st quartile alone
captures 80% of the end-to-end latency. The middle twigp]
quartiles, in contrast, each account for only 8%. Also note
that the first quartile (and a significant fraction of the last

latencies in a large-scale P2P environment.

REFERENCES

M. Adler, R. Kumary, K. Rossz, D. Rubenstein, T. Suel, &d. Yaok,
“Optimal peer selection for P2P downloading and strearhiimgProc.
of IEEE INFOCOM 2005.

M. Casado, T. Garfinkel, W. Cui, V. Paxson, and S. Sava@ppor-
tunistic measurement: Extracting insight from spurioadfit,” in Proc.
of HotNets November 2005.

D. R. Choffnes and F. E. Bustamante, “Taming the torrénpractical
approach to reducing cross-ISP traffic in P2P system$rat. of ACM
SIGCOMM 2008.

D. R. Choffnes, M. A. Sanchez, and F. E. Bustamante, “Nekw
positioning from the edge,” Tech. Rep. NWU-EECS-09-19,200
Dabek, Cox, Kaashoek, and R. Morris, “Vivaldi: A decetized net-
work coordinate system,” iffroc. of ACM SIGCOMM2004.

P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt,d an
L. Zhang, “IDMaps: A global Internet host distance estimatservice,”
IEEE/ACM Transactions on Networkingol. 9, no. 5, October 2001.
M. Freedman, K. Lakshminarayanan, and D. Mazires., “CBA&nycast
for any service,” inProc. of USENIX NSDIMay 2006.

M. J. Freedman, E. Freudenthal, and D. Mazieres, “Deataing
content publication with coral,” ifProc. of USENIX NSDI2004.

K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. E#erand
|. Stoica, “The impact of DHT routing geometry on resilienaad
proximity,” in Proc. of ACM SIGCOMM2003.

M. A. Kaafar, L. Mathy, T. Turletti, and W. Dabbous, “¥iral networks
under attack: disrupting internet coordinate systemspioc. of ACM
CoNEXT 2006.

J. Ledlie, P. Gardner, and M. Seltzer, “Network cooadés in the wild,”
in Proc. of USENIX NSDI2007.

H. V. Madhyastha, T. Anderson, A. Krishnamurthy, N. Bgr and
A. Venkataramani, “A structural approach to latency pridic” in Proc.
of IMC. New York, NY, USA: ACM, 2006, pp. 99-104.

T. Ng and H. Zhang, “Predicting Internet network distanwith
coordinates-based approaches,Froc. of IEEE INFOCOM 2002.

P. Pietzuch, J. Ledlie, and M. Seltzer, “Supportingwoek coordinates
on PlanetLab,” inProc. of WORLDS2005.

PlanetLab, “http://www.planet-lab.org/.”

S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Itapcally-
aware overlay construction and server selection,”Piroc. of IEEE
INFOCOM June 2002.

Y. Shavitt and E. Shir, “DIMES: let the Internet measitself,” ACM
SIGCOMM Computer Communication Revjewl. 35, no. 5, Oct. 2005.
Y. Shavitt and T. Tankel, “Big-bang simulation for enaoing network
distances in euclidean spacéEE/ACM Transactions on Networking
vol. 12, no. 6, 2004.

] A.-J. Su, D. Choffnes, F. E. Bustamante, and A. KuzmémdRelative

network positioning via CDN redirections,” iroc. of the ICDCS2008.
L. Tang and M. Crovella, “Virtual landmarks for the intet,” in Proc.
of IMC, 2003.

Team Cymru, “http://www.cymru.com/bgp/asnlookugph”

Vuze, Inc., “Vuze,” January 2009, http://www.vuzento

G. Wang, B. Zhang, and T. S. E. Ng, “Towards network fgian
inequality violation aware distributed systems,”fmoc. of IMC 2007.

24] B.Wong, A. Slivkins, and E. Sirer, “Meridian: A lightvight network lo-

cation service without virtual coordinates,” Rroc. of ACM SIGCOMM
2005.

R. Zhang, C. Tang, Y. C. Hu, S. Fahmy, and X. Lin, “Impadttioe
inaccuracy of distance prediction algorithms on Interngligations -
an analytical and comparative study,”Pmoc. of IEEE INFOCOM2006.



