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Abstract—Network positioning systems provide an important
service to large-scale P2P systems, potentially enabling clients
to achieve higher performance, reduce cross-ISP traffic and
improve the robustness of the system to failures. Because traces
representative of this environment are generally unavailable, and
there is no platform suited for experimentation at the appropriate
scale, network positioning systems have been commonly imple-
mented and evaluated in simulation and on research testbeds. The
performance of network positioning remains an open question for
large deployments at the edges of the network.

This paper evaluates how four key classes of network po-
sitioning systems fare when deployed at scale and measured
in P2P systems where they are used. Using 2 billion network
measurements gathered from more than 43,000 IP addresses
probing over 8 million other IPs worldwide, we show that
network positioning exhibits noticeably worse performance than
previously reported in studies conducted on research testbeds.
To explain this result, we identify several key properties of this
environment that call into question fundamental assumptions
driving network positioning research.

I. I NTRODUCTION

Network positioning systems have been proposed as a
scalable way to determine the relative location of hosts in
the network, measured in terms of latency or available band-
width [6]. Network positioning information has been used in
a growing number of large-scale P2P systems [1], [3], [8], [9]
that run on hosts located at the edges of the network (e.g.,
on desktops or appliances behind NAT boxes on residential
links). Because traces representative of this environmentare
generally unavailable, and there is no platform suited for
experimentation at the appropriate scale, the corresponding
performance of network positioning remains an open question.

This paper evaluates how four key classes of network
positioning systems fare when deployed and measured at the
scale of real, popular P2P systems. For this study, we gathered
a large, representative dataset based on information reported by
hosts participating in the Vuze BitTorrent system [22] through
an extension to this client, currently installed by hundreds of
thousands of peers.

The Vuze BitTorrent client provides operational deploy-
ments of Vivaldi [5], Vivaldi version 2 (Pyxida) [11] and
CRP [19], in addition to a rich interface for accessing peers’
positioning information. We sample Vivaldi network coor-
dinates and CRP network positions, and perform network
measurements to evaluate their accuracy. We additionally
use the latency measurements between hosts to understand
Meridian [24] and GNP [13] performance in this environment.

Finally, we collect traceroute measurements between BitTor-
rent peers for diagnosing network positioning performance.

This paper makes the following contributions. First, we
find that the accuracy of the network coordinate systems is
significantly worse when used at the edge of the network than
when evaluated from the perspective of a research testbed.
Second, we show that this inaccuracy leads to significant
loss in performance in the case of low-latency distributed
hash tables (DHTs), which use network coordinates to guide
neighbor selection. Third, we explore the root causes of errors
in network positioning in the P2P environment at an Internet
scale, based on latency and topology measurements.

To facilitate new research in network positioning, we will
make our anonymized dataset publicly available. This data
consists of approximately 2 billion latency samples, 30 million
traceroute measurements and hundreds of millions of network
positions gathered during a two-week period.

The remainder of the paper is organized as follows. In
the next section, we describe the four classes of network
positioning approaches that we evaluate in this study. Sec.III
provides details on our dataset and how we use it to evaluate
positioning performance. We analyze the accuracy of network
positioning and its impact on performance in Sec. IV, then
explore sources of their errors in Sec. V.

II. BACKGROUND

There is a rich body of work that addresses the design and
implementation of network positioning systems [5], [12], [13],
[19], [20]. In this section, we describe four classes of network
positioning systems that we cover in this study.

Landmark-based systemsestimate network distances to par-
ticipating hosts by embedding their network locations in a
multi-dimensional Euclidean space based on the hosts’ dis-
tances to a set of landmarks. The Global Network Positioning
(GNP) system [13] provides efficient implementation of this
approach.Landmark-free systems, in contrast, fully decentral-
ize the computation of network locations encoded in a low-
dimensional coordinate space [5], [18]. Among these systems,
the Vivaldi network positioning system [5] is the most widely
deployed.

Despite the success of these systems, recent studies have
called into question the usefulness of network coordinates[25].
For example, Wong et al. [24] note that embedding errors from
network coordinates always leads to suboptimal peer selection
and instead propose Meridian, a structured approach todirect
measurement.
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Unique targets Coverage
Hosts 19,765 Prefixes 7,975
Unique IPs 43,674 ASes 1,625
Behind middleboxes ≈ 86% Countries 129

TABLE I
SUMMARY OF VANTAGE POINTS DURING THE15-DAY PERIOD.

Direct measurement provides high accuracy, but even struc-
tured approaches to latency measurement can incur signif-
icant overhead for large systems. The CDN-based Relative
Positioning (CRP) approach [19] is based on the observation
that relative network positioning is sufficient for many ap-
plications [16] and proposes a low-cost technique to provide
this service byreusing measurementsperformed by content
distribution networks.

III. D ATASET AND METHODOLOGY

Our study focuses on measurements between P2P end
systems primarily located at the edges of the network, while
all previous evaluations of network positioning were based
on data gathered between and from PlanetLab nodes. We
present results based on measurements collected from more
than 40,000 IPs broadly distributed worldwide, with between
6,500 and 7,100 IPs online per day.

Table I summarizes key characteristics of the vantage points
used in this study. For comparison, note that the number of
vantage points online during the 15-day period of our study is
five times greater thanall of the vantage points participating
in DIMES [17] since 2004. Our users are located in more
than an order of magnitude more BGP prefixes than those
available from PlanetLab [15]. Finally, note that because the
peers in our study are often located behind middleboxes at
the edges of the network, they allow us to measure portions
of the Internet not visible when using traditional measurement
techniques [2]. The following paragraphs describe our dataset
and how we use it to evaluate existing network positioning
approaches. For a more detailed description, see the associated
technical report [4].

A. Dataset

The dataset used in this study was gathered from users
running the Ono plugin [3] for the Vuze BitTorrent client.
To compare each technique’s distance estimate with ground
truth, our software performs latency measurements between
connected peers. Our software also issues traceroute probes to
connected hosts for discovering topological information.The
data used in this study was collected during the period of June
10 to June 25, 2008 and will be made publicly available in an
anonymized format.

A distinctive aspect of our measurement approach is that
it records measurements at the scale and in the environment
where network coordinates are intended to be used. These
latencies (P2P), shown in Fig. 1, are generally much larger
than those from MIT King [5] and PlanetLab (PL). In fact,
the median latency in our dataset is twice as large as reported
by the study from Ledlie et al. [11], which used PlanetLab
nodes to probe Vuze P2P users (PL-to-P2P).
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Fig. 1. CDFs of latencies from
different measurement platforms
(semilog scale). Our measurement
study exclusively between peers in
Vuze (labeled P2P) exhibits double
the median latency “in the wild”
(labeled PL-to-P2P).
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Fig. 2. CDF of average latencies
for vantage points when idle and ac-
tively downloading. The distributions
are nearly identical, suggesting that
downloading behavior has a minimal
impact on observed latencies.

During the observation period our collaborative measure-
ment infrastructure collected over 100 million samples from
peers per day. The dataset used in this paper consists of more
than 1.41 billion Vivaldi samples, 60 million CRP ratios, 2
billion total latency samples and 33 million traceroute mea-
surements. The Vivaldi samples were recorded from 43,674
source IPs; the CRP ratios are derived both from a host’s
local ratios and from those gathered by issuing remote DNS
lookups, covering more than 3.3 million distinct IPs.

Finally, we collect traceroute measurements to a random
set of peers connected to each measurement host. We use
the host’s built-intraceroute command with the default
settings, and at most one measurement is performed at a time.
During the measurement period, we collected more than 30
million path measurements starting at more than 70,000 first-
hop router IPs.

B. Latency Matrix

The ping measurements that we collect can be used directly
for evaluating the live performance of CRP and Vivaldi. To
broaden the scope of our study we construct a matrix of
latencies, enabling us to simulate performance for the GNP
and Meridian systems in this context.

To evaluate the limits of network positioning performance
in terms of intrinsic latencies between routable address blocks,
we construct a latency matrix of source and destination
routable BGP prefixes(according to [21]), using the minimum
observed RTT for each matrix element. Because this approach
still yields a sparse 6380x72343 matrix, we use the square sub-
matrix and iteratively remove rows and columns that contain
the largest number of empty elements until a sufficiently dense
submatrix remains. There is a sharp drop-off in the number
of elements in ann%-full matrix asn approaches 100, so we
usen = 95, resulting in a 479x479 matrix. The rows represent
ISPs in North America, Europe, Asia (including the Middle
East), South America and Oceania.

IV. PERFORMANCE FROMEND SYSTEMS

In this section, we evaluate the accuracy of network posi-
tioning systems in a P2P environment and their impact on the
performance of an example application that uses them.

For evaluating GNP performance, we use the authors’
simulation implementation. The results are based on three runs
of the simulation, each using a randomly chosen set of 15
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landmarks, 464 targets and an 8-dimensional coordinate space.
Our Meridian simulation settings are proportional to thosein
the original evaluation, with 379 randomly selected Meridian
nodes, 100 target nodes, 16 nodes per ring and 9 rings per
node. Our results are based on four simulation runs, each of
which performs 25,000 latency queries.

A. Accuracy

We begin our analysis by evaluating the accuracy of GNP
and of the Vuze Vivaldi implementations in terms of errors
in predicted latency. Meridian and CRP are omitted here
because they do not provide quantitative latency predictions.
Figure 3 presents the cumulative distribution function (CDF)
of errors on a semilog scale, where each point represents the
absolute value of theaverageerror from one measurement
host. We find that GNP has lower measurement error (median
is 59.8 ms) than the original Vivaldi implementation (labeled
V1, median error is≈ 150 ms), partially due to GNP’s use of
fixed, dedicated landmarks. Somewhat surprisingly, Ledlieet
al.’s Vivaldi implementation (labeled V2) has slightly larger
errors in latency (median error is≈ 165 ms) than GNP and
V1; however, we show in the next paragraph that its relative
error is in fact smaller.

To compute relative errors, we first calculate the absolute
value of the relative error between Vivaldi’s estimated latency
and the ping latency for each sample, then find the average of
these errors for each client running our software. In Fig. 4,we
plot a CDF of these values; each point represents the average
relative error for a particular client. For Vivaldi V1, the median
relative error for each node is approximately 74%, whereas the
same for V2 is 55%. Both errors are significantly higher than
the 26% median relative error reported in studies based on
PlanetLab nodes [11].

Finally, because Meridian and CRP do not predict distances,
Fig. 4 plots the relative error for the closest peers found byall
the network positioning systems studied. Meridian finds the
closest peer correctly approximately 20% of the time while
CRP can locate the closest peer more than 70% of the time.

B. Latencies in P2P environments

It is possible for client P2P traffic to interfere with the
latency measurements. For instance, queuing delays introduced
by natural P2P traffic could significantly increase delays in
latency measurements and alter the perceived structure of the
Internet latency space. To evaluate the impact of this traffic,
we compare the set of latencies measured when our clients are
actively downloading with those collected when they areidle
(i.e., having upload/download rates 4 KB/s or less).

Figure 2 shows the CDF of latencies for these two sets,
where each point represents theaverageof latencies from one
source to all of its destinations. To ensure enough diversity in
the latency measurements, we include only hosts that perform
at least 50 measurements. While the idle latencies are not
surprisingly smaller than those in the complete dataset, the
difference in median latencies is less than 10% and the curve

shapes are similar. As such, we believe the impact of P2P
traffic is not significant.

C. Impact on Applications

Relative error in latencies alone do not necessarily predict
the quality of network positioning as experienced by the user.
We now focus on whether the errors we reported in the
previous paragraphs do indeed negatively affect application
performance.

This section focuses on the case of distributed hash tables
(DHTs), which can use nearby hosts to reduce the time to
perform read and write operations. In this case, a positioning
system need only guarantee that nodes closer to the local host
have smaller estimated distances than those farther away.

One way to measure this is the relative application-level
penalty (RALP) metric initially proposed by Pietzuch et
al. [14]. This metric measures the latency penalty incurred
by applications using network positioning to select the closest
N peers, compared to optimal selection.

To calculate RALP for a host, we first create a set of
measured latencies,G, between this host and a set of other
hosts, ordered according to “ground-truth” ping measurements.
We then create a corresponding set of measured latencies,P ,
ordered by the hosts’ proximity according to the positioning
systems. For Meridian and CRP, which do not predict dis-
tances, we order the closest peers they found based on their
measured latencies.

We then find the average RALP for each measurement node
using1/n ·

∑
n

i=1
(pi−gi)/gi, wheren is the number of nodes

being measured andi is the index in the ordered sets.
Figure 5 shows a CDF of the average RALP values for each

measurement node when comparing the Meridian-selected
node, the best 10 CRP-selected nodes and the 10 nodes ordered
by estimated distance for the other positioning systems.

Note that the vast majority of RALP values for coordinate
systems is greater than 1, indicating that errors in the posi-
tioning system lead to significant loss in performance for the
DHT that uses it. For example, the median RALP for Vivaldi
V2 when assessing the closest 10 nodes is 26.9, meaning
that for half the peers in our study, the average latency to
Vivaldi-driven peers is about 27 times worse than optimal.
By comparison, Ledlie et al. [11] saw median RALP values
near 0.4 when measuring from PlanetLab. Also note that the
median RALP in our study is much larger than theaverage
per-peerrelative errors shown in the previous section – this
occurs because the set of nearest nodes according to Vivaldi
often have significantly larger latency than the “ground-truth”
nearest nodes. Finally, Meridian and CRP exhibit similar and
comparatively good performance, showing that on average
these systems locate close nodes most of the time.

Based on the empirical results from our study, existing
network positioning systems not only exhibit large errors in
predictions, but those errors significantly impact application
performance in large-scale P2P environments. In the next
section, we explore why this is the case.
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Fig. 3. Absolute value of errors between es-
timated and measured latencies, in milliseconds.
The median error for GNP is about 60 ms whereas
the same for Vivaldi V1 and V2 are 150 and
165 ms, respectively.
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Fig. 4. Absolute value ofrelativeerrors between
estimated and measured latencies. Vivaldi V1 and
V2 exhibit median errors that are triple or double
previously reported; however, these errors are
similar to those in GNP.
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indicate order-of-magnitude loss in performance.
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Fig. 6. Plot indicating portion of variance captured
by each principal component. The first five components
capture only a small portion (20%) of the total variance.

Fig. 7. Map of severity of TIVs in
our measured latency space, where rows
and columns from the same continent
are grouped together. A white point
represents the most severe TIV.

Fig. 8. CDF of portion of end-to-end latency contained
in each quartile of the IP-level path between endpoints.

V. SOURCES OFERROR

Many authors have pointed out issues that impair accuracy
in network positioning systems, including churn, coordinate
drift, corruption, latency variance and intrinsic errors.While
solutions have been proposed to address the first three prob-
lems [7], [10], [11], this section focuses on variance and
intrinsic errors in latency prediction, as they represent fun-
damental challenges for latency-based approaches to network
positioning.

A. Network Embedding

Starting from a matrix of network latencies for a collection
of hosts, early work on network positioning has relied on
the use of principal component analysis (PCA) to estimate
the number of linear combinations of elements sufficient to
capture most of its variance (e.g., [20]). If the vast majority
of the variance is modeled by a few principal components,
then a small number of dimensions may be sufficient to
use in embedding network distances in an Euclidean space.
This analysis has been previously used to select 2, 4 or 7
dimensions [5], [11], [20].

We perform the same PCA analysis on the latency matrix
described in Sec. III. Fig. 6 presents a scree plot of the relative
variance captured by each of the first 30 components, in

descending order of the amount of variance they capture. The
figure contains curves for (i) the percent of thetotal variance
captured by each component (Percent, left y-axis), (ii ) the
relative variance captured by each component normalized by
the value for the first component (Relative, right y-axis) and
(iii ) the cumulativevariance captured by all components with
rank less than or equal tox (Cumulative Percent, left y-axis).

Traditionally, one uses the first two curves to identify the
inherent dimensionality of the space by locating the “knee”
in the curve. While the knee appears to occur around the 4th
or 5th component, these first few components capture only
a small amount (20%) of the variance. Although the values
quickly diminish for other components, the curve exhibits a
long tail. For instance, 9 components are required to capture
25% of the variance and at least 37 components are required
to capture 50% of the variance.

Previous work in PlanetLab has shown much higher vari-
ance captured by small numbers of coordinates, which can be
explained by the platform’s relatively small number of nodes
located near the “core” of the Internet. To hint at the effectof
evaluating a smaller number of networks, we further reduced
our matrix to 274x274 routable prefixes (99% full). After
running PCA on this matrix, the amount of variance captured
by the first componentnearly doublesand the variance for
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the first 5 components increases by 35%. This suggests two
effects: analysis on matrices formed by limited vantage points
underestimates the complexity of the Internet delay space;
however, even with the smaller matrix based on latencies
from the “edge” of the network, the majority of the variance
is not captured by the first few components. We posit that
this additional complexity is one of the primary reasons why
network coordinates yield such large errors at scale.

B. Triangle Inequalities

Triangle inequality violations (TIVs) in a delay space occur
when the latency between hostsA and B is larger than the
sum of the latency fromA to C andC to B (A 6= B 6= C).
This is caused by factors such as network topology and
routing policies. Wang et al. [23] demonstrate that TIVs
can significantly reduce the accuracy of network positioning
systems.

We performed a TIV analysis on our dataset and found
that over 13% of the triangles had TIVs (affecting over
99.5% of the source/destination pairs). Figure 7 visualizes the
severity of these TIVs, where lighter colored points indicate
more severe TIVs and rows/columns belonging to the same
continent are grouped together (as done by Wang et al. [23]).
The figure shows that some networks experience few TIVs
(dark lines), some experience a large number (light lines) and
many experience a significant number in non-uniform patterns.

Compared to TIV rates reported in an analysis of datasets
from Tang and Crovella [20], TIVs rates in the P2P environ-
ment we studied are between 100% and 400% higher, and the
number of source/destination pairs experiencing TIVs in our
dataset (nearly 100%) is significantly greater than the 83%
reported by Ledlie et al. [11]. These patterns for TIVs and
their severity hints at the challenges in accounting for TIVs
in coordinate systems.

C. First- and Last-Mile Issues

It is well known that last-mile links often have poorer
quality than the well provisioned links in transit networks. The
problem is particularly acute in typical P2P settings. However,
most of today’s network positioning systems either ignore or
naively account for this effect.

To understand the risks of ignoring this issue in a latency-
based network positioning system for a P2P environment,
Fig. 8 plots CDFs of the portion of end-to-end latency (log
scale) along quartiles of the IP-level path between the mea-
sured hosts, using the per-hop latencies from our traceroute
measurements.

If the latency were evenly distributed among IP hops along
a path, the curves would center aroundx = 0.25. In contrast,
the first quartile (which is very likely to contain the entirefirst
mile) stands out from the rest, containing disproportionately
large fractions of the total end-to-end latency. For instance,
when looking at the median values, the 1st quartile alone
captures 80% of the end-to-end latency. The middle two
quartiles, in contrast, each account for only 8%. Also note
that the first quartile (and a significant fraction of the last

quartile) has a large number of values close to and larger than
1. This demonstrates the variance in latencies along these first
and last miles, where measurements to individual hops along
the path can yield latencies that are close to or larger than
the total end-to-end latency (as measured by probes to the last
hop). In fact, more than 10% of the 1st quartile samples have
a ratio greater than 1. While Vivaldi uses “height” to account
for (first- and) last-mile links [5], this analysis suggeststhat a
single parameter is insufficient due to the large and variable
latencies in a large-scale P2P environment.
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