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Abstract—We consider the problem of data dissemination in
vehicular networks. Our main goal is to compare the application-
level performance of fully distributed and centralized data dis-
semination approaches in the context of traffic advisory systems.

Vehicular networks are emerging as a new distributed system
environment with myriad promising applications. Wirelessly-
connected, GPS-equipped vehicles can be used, for instance, as
probes for traffic advisory or pavement condition information
services with significant improvements in cost, coverage and
accuracy. There is an ongoing discussion on the pros and cons
of alternative approaches to data distribution for these appli-
cations. Proposed centralized, or infrastructure-based, models
rely on road-side equipment to upload information to a central
location for later use. Distributed approaches take advantage of
the direct exchanges between participating vehicles to achieve
higher scalability at the potential cost of data consistency. While
distributed solutions can significantly reduce infrastructures’
deployment and maintenance costs, it is unclear what the impact
of “imprecise” information is to an application or what level of
adoption is needed for this model to be effective.

This paper investigates the inherent trade-offs in the adoption
of distributed or centralized approaches to a traffic advisory
service, a commonly proposed application. We based our anal-
ysis on a measurements study of signal propagation in urban
settings and an extensive simulation-based experimentation in
the Chicago road network.

I. INTRODUCTION

Vehicular networks are emerging as a new distributed sys-
tem platforms with myriad promising applications. Wirelessly-
connected, GPS-equipped vehicles can be used, for instance,
as probes for traffic advisory or pavement condition informa-
tion services, improving their coverage and accuracy while
reducing their costs [1]–[7].

While diverse in goals, the architecture of most proposed
vehicular network systems adopts either a centralized or a
fully distributed model for data collection and dissemination.
Centralized, or infrastructure-based, solutions rely on road-
side equipment to upload information to a central location
for later use (e.g. [3], [8]). Distributed, cooperative solutions,
on the other hand, take advantage of the direct exchanges
between participating vehicles to achieve higher scalability at
the potential cost of data consistency (e.g. [9], [10]). While
distributed solutions can significantly reduce infrastructures’
deployment and maintenance costs, it is unclear what level of
adoption is needed for this model to be effective and what
is the impact of “imprecise” information to an application.
There is an ongoing discussion on the pros and cons of these

alternative models. This paper contributes to the conversation a
comparative analysis of the application-level trade-offs of fully
distributed and centralized data dissemination approaches for
vehicular networks.

We carried out our study in the context of traffic advisory
and vehicular navigation systems. The outstanding and mostly
unplanned growth in the world’s urban population is severely
impacting our quality of life [11]. A Chicago driver will spend
an average of 56 hours in traffic delays each year, with a total
annual cost of $4 billion. This increase in traffic has had a
devastating impact on the environment, responsible for 50%
of the air pollution in Chicago [12]. Traffic advisory services
have the potential to reduce the impact of vehicular traffic
through more efficient navigation.

For this study, we designed and implemented basic cen-
tralized and distributed data dissemination algorithms. To
compare the application-level trade-offs of each approach,
we employ several dynamic traffic routing algorithms and
compare their performance in terms of total travel time and
distance traveled relative to a node using a static traffic routing
algorithm.

The centralized and distributed systems trade-off between
time savings and distance overhead. While the centralized
system’s “global” view yields greater time savings than the
distributed system’s “local” perspective, it also comes at the
cost of longer routes. For instance, 20% of the centralized
system’s routes are at least 10% longer than the static node’s
route. In comparison, the distributed system only incurs this
much overhead in 5% of its, races.

Centralized system performance depends on the distribution
of access points (APs) that allow communication with a cen-
tralized server. In a planned deployment, where the placement
and density of APs can be controlled, an evenly-spaced grid
pattern will give the best performance. For example, with only
12 APs/km2 the system achieves average time savings of 18%.
Centralized systems relying on opportunistic connections re-
quire higher density of APs to reach similar performance level
as a planned deployment of APs. In a dense urban environment
with high AP density (e.g. 126 APs/km2), average time savings
can match that of a planned deployment (23%). However, in
the case of a region with lower AP density (12 APs/km2), time
savings is only 12%–two-thirds the performance of a similar
system with a planned deployment of APs.

Distributed data dissemination offers the reliability, scala-
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bility and cost benefits of distributed solutions, without neg-
atively impacting application performance in terms of travel
time and distance, relative to the centralized system. Given
information about alternative road segments along their current
route, routing based on a distributed data dissemination model
can achieve time savings up to 14%. This performance is
comparable to that of the centralized system under a low-
density planned AP deployment (18%) or a realistic, non-
uniform distribution of APs (12%).

The following section briefly reviews the background and
context of our work. Section III presents the design of two
basic centralized and distributed data dissemination protocols
and Section IV describes the set of traffic routing algorithms
we used to compare them. We describe our experimental
setup in Section V and present the result of our evaluation
in Section VI. We conclude in Section VII.

II. BACKGROUND

Traffic congestion problems are, regrettably, an unavoidable
part of our daily lives. According to a recent report, in 2005
alone US drivers wasted over four billion hours and nearly
three billion gallons of fuel due to traffic delays [13]. Most
early work on Intelligent Transportation Systems (ITS) was
motivated by such problems associated with traffic congestion.
Research focus on ITS has slowly moved toward remote traffic
monitoring and incident detection using in-road sensors such
as traffic cameras and loop detectors. Induction loop detectors
are one of the most common and better understood monitoring
tools. Despite their popularity, they remain expensive to deploy
and maintain (price ranges from $900 to $2000 per sensor)
and are known to yield very noisy and generally inaccurate
velocity measurements [14]. While alternative infrastructure-
based techniques have been proposed, such as the use of
in-vehicle transponders (e.g. EZPass), license plate readers,
and radar, they all incur high installation and maintenance
costs that have limited their widespread implementation. For
instance, the New York City Department of Transportation
relies only on 22 cameras to monitor the traffic for the whole
city [15].

The known limitations of such traditional sensors [14]
and the increasing availability of wirelessly-connected, GPS-
equipped vehicles has recently spawned a number of projects
evaluating the use of vehicles as probes for measuring traffic
state [2], [3], [5], [6], [10], [16], [17]. While some current
commercial vehicular communication systems [8], [18], [19]
rely on the cellular network for basic communication, it is
unclear if this would be sufficient in terms of coverage, scal-
ability and capacity, to support more demanding applications.

To the best of our knowledge, this is the first work to
examine the trade-offs between distributed and centralized data
dissemination models from an application perspective.

III. DATA DISSEMINATION DESIGN

The data distribution services behind most existing
vehicular-based distributed systems adopt either a central-
ized or a fully distributed model for data collection and
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Fig. 1. Communication diagram for the distributed and centralized data
dissemination models. In the distributed system, nodes send Area Of Interest
(AOI) Requests for recent traffic measurements, and receive an AOI Reply.
For the centralized implementation, nodes opportunistically communicate with
the centralized server via an access point (AP). Nodes send Report messages
of their measurements, and Request messages that ask for an updated route.
The centralized server responds, via the AP, with Acknowledgment messages
of measurements and Route messages.

dissemination. With a centralized approach, vehicles rely on
road-side infrastructure, either in a planned [20], [21] or in
an opportunistic manner [3], to communicate with a central
location. Most existing ITS deployments follow a planned
centralized approach, relying on roadside sensors, cameras
and network access points (APs). While promising, their high
deployment and operational costs prevent them from reaching
their fullest potential.

Some recent proposals for vehicular-based systems using
centralized models avoid such costs by opportunistically taking
advantage of already deployed open APs (e.g. [3], [7], [22]).
In general, however, these architectures bring with them the
classic problems of scalability and resilience associated with
any centralized solution, in addition to less obvious privacy
issues [2].

When adopting a distributed, cooperative model (e.g. [9],
[10]) for data dissemination, vehicles depend solely on inter-
vehicle communication. Although distributed solutions could
avoid the problems associated with infrastructure deployment
and maintenance, it is unclear how quickly such a system can
be bootstrapped or what level of adoption is necessary for the
model to be effective.

Our goal is to compare the application-level trade-offs of
fully distributed and centralized data dissemination approaches
in the context of traffic advisory systems. To facilitate our
study, we first introduce two basic, pull-based distributed and
centralized protocol designs for data dissemination. Figure 1
illustrates both protocols, showing the communication steps
for every interaction with a common framework that highlights
the parallelism between them.

A. Distributed Data Dissemination

Our basic distributed data dissemination protocol has three
steps. Every vehicle beacons to advertise its presence. Any
vehicle can request (pull) traffic information from a nearby
peer. Vehicles respond to traffic update requests the most
recent measurements for the requested sections of the map.
Hereafter, we use vehicles or nodes when referring to the
instrumented vehicles participating in our system.
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Step 1: Beacon. Every node in the system periodically
sends a beacon message. Node beaconing allows surrounding
nodes to learn of the presence of others and to estimate
how many of them are within communication range. A node
receiving a beacon probabilistically determines whether or not
to respond according to the inverse of the number of beacons
received in the last beacon interval. This improves system
scalability under high node density by limiting the number
of nodes responding to a beacon.

Step 2: Area of Interest Request. If a node decides to
respond to a beacon, it sends an Area of Interest (AOI) Request
message to the beaconing node which includes a list of road
segments for which it requests updated state information.

Step 3: Area of Interest Reply. When a node receives
an AOI Request, it compiles a reply (an AOI Reply) with
the most recent data for each road segment requested. The
actual data included (e.g. average temporal speed), will depend
on the routing algorithm in use, but it is extracted from the
responding node’s local estimation of global traffic conditions.
A vehicle’s local view of global conditions is derived from the
data reported by all vehicles with which it has previously been
in contact. The node receiving the AOI Reply incorporates the
new data into its estimation of global traffic conditions and,
potentially, recomputes its route.

B. Centralized Data Dissemination

As in the distributed model, vehicles accumulate mea-
surements for each road segment they traverse. Under a
centralized architecture, vehicles report all recently collected
measurements to the next access point (AP), which in turns
reports it to the central location. Vehicles can also use the
exchange to request route updates. The centralized location
makes routing decisions, upon request, based on the reports
from all instrumented vehicles. Both the frequency at which
vehicles report collected measurements and obtain updated
routes is limited by the availability of APs.

Step 1: Beacon Every AP in the system periodically sends
a beacon message. AP beaconing allows surrounding nodes to
learn of the presence of APs and to estimate how many of them
are in communication range. To improve scalability under
high node density, a node receiving a beacon probabilistically
decides whether to respond or not, according to the inverse of
the number of beacons received in the last beacon interval.

Step 2: Segment Status Report and Route Request If
a vehicle decides to respond to a beacon, it sends to the
beaconing AP all recently collected measurements that it has
not yet reported as a Segment Status Report. A vehicle can
also send a Route Request that includes its current location
and destination.

Step 3: Central Location Acks and Route Updates
The central location responds to a node via the AP from
which it sent the messages. The centralized server sends
Acknowledgment messages for Segment Status Reports, which
signal that the node can remove those reports from its local
buffer. In the case of a Route Request, the centralized location

uses its global view to compute the new route and return it to
the requesting node as a Route Update message.

IV. TRAFFIC ROUTING ALGORITHM DESIGN

It is clearly possible to directly compare centralized and
distributed approaches to data dissemination in terms, for
instance, of delivery latencies or packet drop rates. Such a
comparison, however, would provide little insight into the
impact of either approach on the performance of a client
application.

This work focuses instead on understanding the application-
level implications of each data distribution model in the con-
text of traffic advisory systems. Traffic advisory or vehicular
navigation systems, an increasingly standard feature of most
vehicles, rely on positioning information and map databases
to provide step-by-step navigation information to the driver.

For our study, we implemented a set of dynamic routing
algorithms (Temporal Speed, Spatial Speed and Surface Street
Traffic Estimation) and a basic static routing algorithm (Travel
Time). All algorithms employ the A* search algorithm for
finding the lowest cost path to a destination given the available
segment cost data. The three dynamic routing algorithms
use location and bearing information, provided by ideal GPS
device, to estimate segment conditions. With position informa-
tion provided once per second, each instrumented vehicle can
measure or infer their required parameters, such as average
speed over a segment, instantaneous speed and stop duration.
When exchanging segment information, the dynamic rout-
ing algorithms prioritize measurements using an exponential
weighted average that gives higher priority to more recent
observations. When no recent measurements are available for
a given segment, the dynamic algorithms fall back on static
information (e.g. road length, speed limit) to estimate travel
time.

Note that available bandwidth is not a limiting factor in
the performance of these traffic routing algorithms. In our
experiments on city streets (Section V), using a 25 miles-per-
hour speed limit an interaction lasts approximately 45 seconds
over which nearly 2 MB of data can be transferred. This is
at least an order of magnitude greater than what is required
for any configuration of our traffic advisory system. In an
AOI Request message, each road segment is represented by a
unique 8-byte identifier; we could request information on every
road segment in over 1 km2 of a dense urban environment
(300 segments) in 2.4 kB of data. The AOI Reply message in
response to such an AOI Request would require about 32 kB
of data, since each measurement requires about 105 bytes.
In total, one interaction with a large area of interest would
consume only about 35 kB of data.

The following paragraphs describe each of our routing
algorithms, starting with our baseline algorithm – Travel Time.

A. Travel Time Routing Algorithm

Travel Time is a naı̈ve routing algorithm that relies exclu-
sively on static data. A road segment’s length and speed limit,
as well as a global estimated red light duration, are used to
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estimate the idealized travel time. While under light traffic
conditions Travel Time could be sufficient, one would expect
suboptimal routing performance under less ideal conditions.
We use Travel Time as a baseline to normalize the performance
of the dynamic routing algorithms.

B. Temporal Speed Routing Algorithm

Both Temporal Speed and Spatial Speed rely directly on
information reported by GPS devices to estimate travel time.
Temporal Speed routing is a straightforward extension of the
Travel Time algorithm. Temporal mean speed – the length of
the road divided by the total segment traversal time–gives a
travel time estimate grounded in the actual experience of a
vehicle.

A potential problem with temporal speed as a cost metric
is that it can be significantly affected by traffic lights in urban
settings. While a sufficiently large number of measurements
can reduce the impact of the random delay introduced by
traffic lights, this makes the approach less sensitive to subtle
changes in traffic congestion.

C. Spatial Speed Routing Algorithm

Spatial Speed routing uses the average instantaneous speed
(collected at 50-foot intervals along the road segment) to
estimate the travel time for a segment. Since the model is
insensitive to the amount of time a vehicle stopped while
traversing the segment, its travel time estimate is not affected
by the random red light delay. Logically then, spatial speed
does not account for red light delays although these can be a
significant proportion of the total trip time on urban roads.

D. Surface Street Traffic Estimation Routing Algorithm

Our last routing algorithm adapts Yoon et al.’s [6] Surface
Street Traffic Estimation (SSTE) approach, which incorporates
both temporal and spatial speed metrics and relies on a
dynamically maintained model of segment condition for its
estimations of travel times. Since the original proposal of the
SSTE model made no prescription for how to use it for routing,
we first present an interpretation of the model that enables us to
perform route cost calculations based on these data. Given that
SSTE incorporates both temporal and spatial speed metrics,
we expect that this algorithm will offer the best performance
among the alternatives.

For each road segment, SSTE aggregates a distribution of
segment traces that characterizes the road segment across the
range of traffic conditions. A SSTE distribution (e.g. Figure 2)
is represented by a “spatio-temporal” plot, named because each
segment trace is a data point plotted at its temporal mean speed
on the X axis and the spatial mean speed on the Y axis.

The temporal threshold (vertical line) defines the boundary
between temporal speed values corresponding to uncongested
or congested traffic conditions. Variation in temporal mean
speed above this threshold (A) can be attributed to the red
light delay, which is estimated from the 95th percentile of
the distribution of stopping durations (the duration of a stop
is inferred from the GPS data). Temporal speed below this
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Fig. 2. A sample SSTE spatio-temporal plot taken from our simulator for a
road segment with a speed limit of 25 miles per hour. Variation in temporal
speed along A can be attributed to waiting at the traffic light; measurements
of temporal speed along B are slower than would be expected due to only
waiting at the traffic light, and are an indication of poor traffic conditions.

threshold (B) indicates delays greater than the maximum
expected delay from waiting at the traffic light. Therefore,
when a measured temporal speed is lower than the threshold,
we infer that there is traffic congestion causing delays.

The spatial threshold (horizontal line) separates stop-and-
go traffic from smoothly flowing traffic traces. This threshold
is set at the 5th percentile of the spatial mean speed mea-
surements on the right side of the temporal threshold. Spatial
mean speeds above the spatial threshold indicate that traffic
is moving smoothly, while lower spatial mean speeds imply
stop-and-go traffic.

For routing we use the temporal threshold to switch between
two ways of estimating travel time, based on whether we infer
traffic congestion on the road segment. In the first case, when
the temporal mean speed of a segment trace is below the
temporal threshold, we assume that delays caused by traffic
congestion dominate the red light delay. Therefore, we simply
use temporal mean speed to calculate the estimated traversal
time for the segment, ignoring the red light delay. We identify
the second case–no significant traffic congestion–when the
temporal mean speed is greater than the temporal threshold.
In this scenario, the temporal speed is subject to significant
variations due to a random red light delay. For this case, the
trace’s spatial mean speed can be used to estimate travel time
if there were not a traffic light. We add half of the estimated
red light delay to the travel time cost when there is a traffic
light present.

An SSTE distribution must include sufficient segment traces
before it can be used to reliably classify traffic state. The
SSTE authors claim that a distribution having 10 data points is
sufficient to achieve 90% accuracy in classifying traffic state;
we adopt this value for our trace count threshold. Clearly, this
threshold introduces a delay between when a node creates a
distribution for a road segment and when it has aggregated
enough data to be able to accurately infer traffic on the
segment. To minimize this delay, a node’s distribution is
bootstrapped based on the SSTE distribution parameters from
another node that already has a sufficient number of segment
traces. Once a node has accumulated enough traces in its
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Fig. 3. The simulation region from downtown Chicago, 1275 m wide by
1125 m tall with area 1.43 km2. Bounded by Oak to the north, Illinois to the
south, St. Clair to the east and Orleans to the west.

distribution, it includes its thresholds and model parameters
when exchanging measurements with other nodes.

V. EXPERIMENTAL SETUP

We use simulation to study the application-level perfor-
mance of centralized and fully distributed data dissemination
models. The following paragraphs describe our simulation
framework and experimental setup. We introduce the use of
vehicular races as a novel framework for evaluating data
distribution models in the context of a traffic advisory service.

A. Simulation Framework

For simulation, we use the JiST/SWANS simulator [23].
JiST/SWANS provides an integrated, configurable, and flexible
environment for evaluating ad hoc routing protocols, especially
for large-scale network scenarios. It contains a detailed model
of the IEEE 802.11 wireless LAN protocol and a stochastic
radio channel model, both of which we use in this work. We
model vehicular mobility using the STreet RAndom Waypoint
(STRAW) [24] mobility model. STRAW captures realistic ve-
hicular mobility, incorporating well-understood car-following
and lane-changing models and traffic control (e.g. traffic lights,
stop signs), over actual city road maps imported from the
TIGER/LINE database [25]. Since its release, STRAW has
been adopted by hundreds of researchers world-wide from
both industry and academia.

We conduct all our simulations in a region of Chicago’s
downtown area, shown in Figure 3. The region has a total
area of 1.43 km2. The 277 road segments are in total 52 km
long (counting each direction separately) and predominantly
form a Manhattan grid pattern. To ensure traffic congestion
in the map, we simulate 322 vehicles per square kilometer.
Of these vehicles, we instrument 15%, yielding a density of
48 participating nodes per km2. For the centralized system,
APs are modeled as having a loss-less, low latency and
infinite bandwidth connection to the centralized server. Each
simulation is 3 hours long, with a 1 hour warmup period.

B. Setting Signal Propagation Parameters

The performance characteristics of the network stack’s
underlying physical layer defines the boundaries of a system’s

Fig. 4. GPS and radio antennas installed on the roof of a vehicle. The car’s
windshield is visible in the lower left-hand corner of the image. The left inset
shows the internal hardware of the Soekris machine. The right inset shows
the front of the node.

abilities [26]–[28]. We adopt the shadowing model with log-
distance path loss [29] to model the physical layer. While
simpler, deterministic models exist, e.g. free space and two-ray
ground, they do not account for key aspects of real radios or
capture typical VANET settings environments with complex
obstacle patterns [30].

The model relies on two empirical parameters to charac-
terize an environment: a path loss exponent and a shadowing
value. The mean received signal strength decays with distance
according to a power-law path loss model. The path loss
exponent describes an environment-specific decay rate of sig-
nal strength. The shadowing factor models the unpredictable
effects of a complex environment on signal propagation with a
log-normal random variable added to the deterministic signal
strength given by the path loss exponent. To appropriately
configure the signal propagation model use in our evaluation,
we carried on a series of measurement experiments in an urban
setting, using a set of instrumented vehicles [31].

Figure 4 shows one of such vehicles. Each of them car-
ries a Soekris [32] net4801-60 machine, with an Ubiquiti
Networks [33] SuperRange2 2.4 GHz 802.11b/g mini-PCI
module for wireless communications, a roof-mounted Pacific
Wireless [34] 7 dBi 2.4 GHz omnidirectional antenna, and a
Garmin [35] GPS 18 USB device to provide location data.
The Soekris nodes run Linux and use standard utilities such
as iperf [36] and tcpdump [37] to generate and record network
traffic. The wireless cards were configured to operate on IEEE
802.11b channel 1 (2.412 GHz) in ad hoc mode with bitrate
fixed at 2 Mb/s, request-to-send and fragmentation disabled,
and with transmit power of 26 dBm.

The vehicles traveled back and forth along 3 blocks of
the same street to collect line-of-sight (LOS) and non-LOS
signal strength measurements across a wide range of distances.
Transmitting nodes were configured to send a 1 Mb/s stream
of UDP packets, while other nodes were configured to receive
that stream. We categorize all packets received during our
experiments into either LOS or non-LOS communication and
perform aggregate analyses to estimate the model parameters
using measured signal strength and distance information. Ta-
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LOS non-LOS Combined
β σdB β σdB β σdB

3.17 9.15 4.05 10.74 3.43 11.95

TABLE I
MEDIAN PATH LOSS EXPONENT (β) AND SHADOWING STANDARD

DEVIATION σdB FOR EACH CONFIGURATION: LINE-OF-SIGHT (LOS),
NON-LOS AND COMBINED.

ble I contains the observed path loss exponent and shadowing
parameters for the urban environment under LOS communi-
cation, non-LOS communication or both–Combined. Aggre-
gating LOS and non-LOS measurements yields average path
loss exponent and shadowing parameters for the environment
as a whole. The shadowing parameter for the Combined data
set is logically larger than that of the subsets.

We use our empirically determined parameters and the given
radio configuration to simulate communication in an urban
environment. For the distributed system, we opt for a conser-
vative configuration using the Combined parameters. For the
centralized model, we selected the non-LOS parameters for
communication with APs. To reduce the impact of noise due
to multiple communicating nodes, we adopt low penetration
ratios of instrumented vehicles.

C. Race Framework

To evaluate the relative performance of routing algorithms,
we set up races between two random points in the road
network. The start and destination are required to be at least
1200 m apart so that races are non-trivial.

Each race involves two vehicles – one using a dynamic rout-
ing algorithm and one using the static Travel Time algorithm.
Both vehicles are placed on the same road segment at the start
location. Placement order alternates between runs. When the
first race node reaches its destination, it waits for the second
node to start a new race. For our analysis, we consider only
races that started after 60 minutes into the simulation to give
the traffic routing algorithms a chance to warm up.

D. Evaluation Metrics

We focus on understanding the application-level implica-
tions of centralized and fully distributed data dissemination
models. We do this in the context of traffic advisory systems
using two application-layer metrics – Time Savings and Dis-
tance Overhead.

Time savings is the percent difference between the dynamic
node’s time to complete the race relative to the static node’s
completion time. Greater time savings indicate better perfor-
mance of a routing algorithm.

Distance overhead, computed in the same manner as the
time savings metric, is the percent difference of the distance
traveled by the dynamic traffic routing node relative to static
one. Lower distance overheads are preferred.

VI. EVALUATION

This section presents results from our extensive evaluation
of centralized and fully distributed models for data distribu-
tion. For this evaluation, we induce traffic delays in the road

network to observe the relative performance of the different
routing algorithms. Without traffic congestion, the nodes using
a dynamic traffic routing algorithm would not have any
congestion to avoid, and therefore would not be able to gain an
advantage over the static traffic routing algorithm. We do this
by simulating traffic events on a subset of road segments and
artificially reducing the speed limit of the segment to about
2 miles per hour for 30 minutes. Such an event mimics the
behavior of traffic in a construction zone or in the aftermath
of an accident, causing significant congestion on and around
that road segment. After a 30 minute warmup period without
traffic events, we add traffic events so that approximately 10%
of the road segments in the map are affected at any given time.

Given the impact of traffic-light duration in routing through
an urban network, we first analyze the performance robustness
of alternative traffic routing algorithms to it. Then, we discuss
the performance of distributed and centralized data distribution
services for traffic routing under varied node densities. Last,
we analyze the sensitivity of both data distribution models to
key configuration parameters: AP densities (centralized) and
area of interest (distributed).

A. Red Light Duration and Traffic Routing

The various traffic routing algorithms respond differently
to variations on red light duration. To understand the impact
of varying red light durations, we configure each intersection
in the simulation with an independently configured red light.
To model low traffic light delays, we randomly assign inter-
sections to have red light durations from 12 to 48 seconds.
We selected the interval based on average travel time for a
median length segment in our simulation - 24 seconds. The
longest delay due to a red light (48 seconds) at most triples
the travel time for that segment. To model higher traffic light
delays, we use a base value of 96 seconds, giving red light
durations from 48 to 192 seconds.

Figure 5 is a cumulative distribution function (CDF) of time
savings for the three dynamic routing algorithms under short
and long light durations. The time savings performance of
the Temporal Speed and Spatial Speed routing algorithms are
very sensitive to different red light durations, particularly when
contrast with SSTE. The SSTE algorithm’s time savings under
long red light durations is no more than 10% lower compared
to its time saving under short red light durations (Figure 5(c)).
Temporal Speed (Figure 5(a)) and Spatial Speed (Figure 5(b))
routing show similar performance to SSTE with short red light
durations – the rerouting nodes win the race about 80% of
the time, and 25% and 35% of the races result in significantly
large time savings of more than 50% over the naı̈ve algorithm.
However, under longer red light durations, both the Temporal
and Spatial Speed routing algorithms only win about 60% of
the races–20% fewer than the SSTE algorithm.

Given its robustness to the changes in traffic light duration,
for the remainder of our discussion we use SSTE-based routing
and limit red light durations to 12 to 48 seconds.
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Fig. 5. Centralized time savings of each of the three routing algorithms, under high AP density with a grid layout (see Section VI-C). SSTE routing gives
lower variation in performance across variations in red light duration in comparison to Temporal and Spatial Speed routing.
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Fig. 6. Impact on time savings as a result of varying the node density in the distributed system. Distributed and centralized time savings and distance
overhead under low node density.

B. Distributed and Centralized: Varying Node Density

Node density, i.e. the percentage of instrumented vehicles in
the system, is critical to the performance of a traffic advisory
service – larger numbers of instrumented nodes result on
more detailed knowledge of traffic conditions for both the
centralized and distributed data dissemination models. In the
distributed model, the density of participating nodes is also
directly associated with the rate at which nodes meet and are
able to exchange traffic information. We assess the application-
layer performance of the centralized and distributed systems
under varied node densities (24, 48, and 96 nodes/km2).

We find that the time saving of the centralized data distribu-
tion model system is unaffected by changes in node density.
A density of 24 nodes/km2, the lowest of those evaluated,
appears to be sufficient to generate a map of traffic congestion
for efficient routing. The time savings performance for the
centralized system under all node densities is identical to the
centralized curve in Figure 6(b). However, as node density
increases the routing algorithm becomes more “reactive” to
changes on traffic conditions. This ultimately results on longer
detours, with greater distance overhead (not shown) but no
additional time savings. In the case of the distributed data
dissemination model, on the other hand, varying node density
does similarly increase distance overhead although this also
comes with improved time savings (Figure 6(a)).

As Figures 6(b) and 6(c) show, both the centralized and
distributed-model based routing algorithms results in faster
routes in over 75% of the races under low node density. In
addition, in 75% of the races both approaches achieve these

time savings with relatively low distance overhead ( <10%)
when compared with the static Travel Time algorithm.

At this density, the distributed and centralized approaches
trade time savings and distance overhead. Since the centralized
system’s routing algorithm has “global” knowledge of traffic
conditions, it finds slightly faster paths than the nodes in the
distributed system (Figure 6(b)). As shown in Figure 6(c),
the centralized system’s “global” knowledge also results in
larger detours around congested areas, which translates in 20%
of its races having distance overhead greater than 10%. In
comparison, distributed nodes only have distance overhead
>10% in 5% of their races.

C. Centralized Performance: Varying Access Point Density

To assess the impact of less reliable connectivity on the
performance of applications using centralized data dissemi-
nation, we study application-level performance under varying
distribution and density of APs. It has been reported that
APs are clustered and randomly distributed [38]. We therefore
adopt three AP placement algorithms – uniform, random,
and clustered – to evaluate the effect of increasing levels of
unpredictable connectivity with the centralized server. Under
uniform placement, APs are arranged in a rectangular grid.
Random placement results in APs being placed randomly
in the simulation map. In clustered placement, with some
probability P (0.5) an access point is placed within a subregion
of the simulation map (a 300 m square, 6% of the whole map),
otherwise it is placed randomly.

We evaluate each AP placement algorithm with different AP
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Fig. 7. Effect of varying access point (AP) density on the centralized system. P(Connected) shows the probability that a node is connected to an AP.
Measurement Latency displays the mean and standard deviation of the latency from when a measurement was recorded to the time that it was received at
the centralized server. The Time Savings plots show the mean and standard deviation of percent time saved by rerouting in a race, relative to the naı̈ve node.
The Placement Time Savings plot (Figure 7(c), 12 APs/km2) shows that AP placements resulting in lower measurement latency yield better time savings
performance.

densities. We determined a typical urban access point density
by searching the WiGLE wardriving database [39] for free
or commercial access points (APs) in our simulation region.
We found a total of 191 access points–174 commercial and
17 free–that had been detected during the time from January
2008 to October 2008, yielding about 130 access points per
square kilometer. With the centralized signal propagation and
radio model parameters described above, the base transmission
radius is about 60 m. With 126 APs/km2 placed in a grid, a
centralized node is usually in range of at least one access point.
To simulate areas with lower AP densities, we selected four
additional AP densities as low as 6 APs/km2.

Figures 7(a) and 7(b) shows the impact on physical-layer
and application-independent metrics when varying the AP
distribution and density. The P(Connected) metric represents
the proportion of time that a node is in range of an access
point; as AP density increases, so does P(Connected). Mea-
surement Latency gives the time from when a measurement
was collected until it was received at the centralized server.
As density increases, latency decreases because nodes have to
travel for a shorter time before encountering an AP.

Corresponding with the P(Connected) and Measurement
Latency metrics, Figure 7(c) shows that higher P(Connected)
and lower latency result in greater time savings performance.
The grid placement algorithm, therefore, results in the highest
time savings. Random placement has the second highest
performance, while clustered placement yields the lowest time
savings. For example, under the grid placement algorithm,
about 25% of the rerouting race nodes have greater than 50%
time savings compared to the naı̈ve node. However, for the
clustered algorithm, only 15% of the races are won with more
than 50% time savings.

Figure 8 shows that there is an upper bound of time savings
performance as AP density is increased. At low AP densities,
increasing the density can significantly improve performance.
For example, doubling the AP density from 6 APs/km2 to
12 APs/km2 results in nearly a 20% increase in time savings
for more than a quarter of the races. However, at sufficiently
high AP densities, adding more APs will not improve perfor-
mance. A prime example of this is seen when increasing AP
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Fig. 8. Time Savings: Diminishing Returns on AP Density. The plot shows
the upper bound of time savings performance as AP density increases with
grid AP placement.

density by a factor of 7, from 18 APs/km2 to 126 APs/km2.
In this case, the highest AP density resulted in less than 2%
time savings for the majority of the races. The diminishing
marginal returns on increasing AP density suggest that the
connectivity provided by 18 APs/km2–nodes connected 50%
of the time, mean measurement latency of 5 minutes–is
sufficient to provide near-upper-bound performance levels at
one-seventh the AP density that exists in a dense urban area.

D. Distributed Performance: Varying Area of Interest

To evaluate the trade-off between data consistency and
bandwidth consumption in our distributed traffic advisory
system, we compare the application-level performance under
three types of Area of Interest (AOI) messages: “2 Block
Radius”, “Full Route” and “Quarter Route” (Figure 9(a)). The
“2 Block Radius” (A) region restricts a node’s knowledge to
traffic conditions just beyond the next intersection; this means
that the routing algorithm is only able to make decisions
based on local traffic conditions. The “Full Route” (B) region
includes road segments along the node’s entire route. The
intent of the Full Route AOI is to give the routing algorithm
early warning of upcoming congested areas along the node’s
route, so it can reroute ahead of time. The “Quarter Route”
(C) region focuses on providing the routing algorithm with
traffic information for a large number of alternative routes in
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Fig. 9. Area of Interest Types shows the sample regions covered by the three distributed system AOIs that we study. 2 Block Radius (A) is a circular region
around the node’s current location. Full Route (B) includes every road segment within 2 intersections of any point on the node’s route (indicated with a heavy
black line). Quarter Route (C) includes every road segment within 4 intersections of the first quarter of the node’s route. The Quarter Route AOI requires the
most bandwidth because its region encompasses the most road segments. The Time Savings plot shows performance increases with the size of the AOI while
the Bandwidth plot shows the mean and standard deviation of KB/s received by each node. Requesting data about road segments along the node’s route and
increasing the breadth of the requested data both offer marginal increases in application layer performance at the cost of increased bandwidth consumption.

the short term; it includes road segments within 4 intersections
away from the first quarter of the node’s route.

Figure 9(b) shows that providing the routing algorithm with
more short-term alternate paths yields the best performance.
In general, larger AOI regions yielded better time savings
performance. Specifically, 2 Block Radius had mean time
savings of 9.8%. Full Route, with mean time savings of
12.8%, has better performance than 2 Block Radius. However,
Quarter Route has the largest mean time savings: 14.4%. When
comparing Quarter Route and Full Route AOI, it is clear
that Full Route’s routing algorithm cannot capitalize on traffic
information along the furthest segments of the node’s route –
as their conditions may change to invalidate previous routing
decision.

Not surprisingly, larger AOIs imply higher bandwidth de-
mands. Figure 9(c) shows the required bandwidth for the
these different AOIs. The Quarter Route AOI requires the
most bandwidth, 10 kB/minute per node–twice as much as 2
Block Radius. The standard deviation of both Full Route’s and
Quarter Route’s bandwidth are greater than 2 Block Radius
because the size of the nodes’ AOI requests vary with the
length of the node’s current route to its destination.

VII. CONCLUSION

We consider the problem of data dissemination in vehicular
networks. Our goal was to explore the inherent trade-offs
in the adoption of distributed or centralized approaches to
a traffic advisory service, a commonly proposed application.
We based our analysis on a measurements study of signal
propagation in urban settings and an extensive simulation-
based experimentation in the Chicago road network. We found
that both approaches can provide comparable performance,
even under challenging low adoption conditions. For instance,
with a 7% penetration ratio (24 nodes/km2) both systems are
able to provide a faster route at least 70% of the time, while
incurring less than a 10% increase in distance traveled 75%
of the time.
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