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Abstract mance by taking advantage of a large number of coopera-

Peer-to-peer (P2P) systems enable a wide range of neU\\//e' interconnected hosts.
P y g While much of the strength of the P2P model lies in

and important Internet applications that can provide low- . . .
. . . . _large numbers of interconnected nodes, their connections
cost, high-performance and resilient services. While a

strength of the P2P paradigm is the ability to take advantagg,ffer multiple opportunities for eavesdropping. With P2P

. . networks increasingly under surveillance from private and
of large numbers of connections among diverse hosts gy P

each of these connections provides an opportunity fOIgovernment organizations [15, 34, 38] and subject to politi

eavesdropping on sensitive data. A number of effortscal censorship [21, 31], there is an urgent need for privacy-

. . : nhancing systems that are both effective and practical. A
attempt to conceal connection data with private, truste . .
o . umber of efforts attempt to conceal connection data with
networks and encryption; however, the mere existence of .

o r . . rivate, trusted networks and variable levels of encryptio
a connection is sufficient to reveal information about uselp yp

activity. Using only the connection patterns gatheredrduri A#Qr?ugg g\tf:rcgvei\?;r:efézﬁg;%oiccﬁzss?;hergggﬁee? Ii)z:ve
a one-month period (comprising a stable population of:Nang 9 ' PP

10,000 BitTorrent users), we extract communities of usersthe existence of the connection itself visible. In this pape

we show that these connections erode user privacy in a way

that share interest in the same content. Despite the fact th?hat is ianored by most distributed svstems and transparent
connections in BitTorrent require not only shared interestb 9 y Y P

. . . 0 end users.
in content, but also concurrent sessions, we find that stron Thi " he BItT file-shari
communities of users naturally form — our analysis reveals | S work focuses on the BitTorrent file-sharing net-

that users inside the typical community are 5 to 25 timedVOrk where peers connect solely on the basis of common

more likely to connect to each other than with users outsidedNd concurrent interest in the same content, rather than

These strong communities enable a guilt-by-associatiof?” friéndship [13], common language [39] or geographic
attack, where an entire community of users can be classifieB©Ximity [3]. Using connection patterns gathered during

by monitoring one of its members. Our study shows tha® ©N€-month period (comprising a stable population of

through a single observation point, an attacker trying 010,000 BitTorrent end-users), we investigate the exigtenc

identify such communities can uncover 50% of the networkO! communities — collections of peers significantly more
within a distance of two hops likely to connect to each other than to a randomly selected

To address this issue, we propose a new privacypeer' We show that strong communities form naturally in

preserving layer for P2P systems that disrupts communit |t;'grtr'ent, with uslirsl lntS|de a WF;'(t?a| COTm;Jhnltytrt])emgfh
identification by obfuscating users’ network behavior. 0 IMes more fikely to conhect to each other than wi

We show that a user can achieve plausible deniabilityOUtS_Ide gsers. i - .

by simply adding a small percent (between 25 and 50% Hls_t0r|cally, th|§ ability to classllfy users ha_s been glnhse
of additional random connections that are statistically?y third parties in ways that violate individual privacy.
indistinguishable from natural ones. Unlike connections! N€ €xistence of strong communities enables a guilt-by-
in anonymizing networks, these random connections hav@SSociation attack, where an entire community of users
the benefit of adding available bandwidth to the related®@n be classified by monitoring one of its members. Our
swarms. Because our solution is protocol compliant andtudy demonstrates that, through a single observatior,poin

incrementally deployable, we have made it available as aAN attacker trying to identify such communities can reveal
extension to a popular BitTorrent client. 50% of the network using only knowledge about a peer's

neighbors and their neighbors (i.e., peers within two hops
of the attacker). Further, an attacker monitoring only 1% of
1 Introduction the network can correctly assign users to their communities
of interest more than 86% of the time.
P2P computing has enabled a wide range of new and To address this threat, we propose a new privacy-
important Internet applications ranging from large-scalepreserving layer for P2P systems that obfuscates user-
data distribution to video streaming and telephony. Thegenerated network behavior. We show that a user can
approach provides scalability, reliability and high perfo achieve plausible deniability by simply adding a small
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percent (between 25 and 50%) of additional random
connections that are statistically indistinguishablenfro 15000
natural ones. Based on this result, we design a system that
generates such connections by participating in randomly
selected torrents. We describe how our implementation for 10000
a popular BitTorrent client protects against classifiqatio

while enabling users to specify how to balance the goals of

privacy and performance. 5000 - 7
Our work makes the following four key contributions. it N bl NS LS W

We present the first characterization of communities among

BitTorrent users. Using only connection patterns between 07 ' 10 ' 20 ' 20

real users in the BitTorrent network, we find surprisingly Day of the month

strong and distinct communities of peers that regularlycon . )

nect with each other. While this behavior has been observefigure 1: Number of users and connections present in each day
in social networks. we are the first to find it in the context of our dataset. With over 10,000 total users the period, we see on
of BitTorrent. Sec,ond we introduce a new privacy threataverage 3,000 users online and 10,000 connections per day.
model. We show that an attacker can use information about ) ) ) )
communities to efficiently classify and effectively momito rom €ach monitored host, and the time during which those
users that share interest in the same content. Third. weonnections were active. Based on the BitTorrent protocol,
propose and analyze a defense strategy against this thre%lponnection between users indicates thatthc_ay share.s';ntere
that provides privacy through obfuscation. Our approacHn SOme content; however, we dot record any information
disrupts attempts to classify user behavior by inducinghat identifies the particular content. _
connections to random torrents that mask those requested e restrict our analysis to a stable set of peers during the

by the user. Fourth, we implement our defense Strategipeasurement period. Specifically, we filter our dataset to
and make it publicly available. Since our solution is contain data only for hosts that have appeared in our records

protocol compliant, we make an implementation available®€fore March 1, 2008 and after March 31, 2008 (based on
as a pluggable extension to a popular BitTorrent client. data recordeq from July 15, 2007 until December 11, 2008).
The remainder of the paper is structured as follows Ve are left with 10,288 users, and an average of 3,029 users

Section 2 describes how to identify communities of user2Nline and an average of 10,162 connections between these

based on BitTorrent connection information. We show that/Sers per day. .
these communities of shared interest can be exploited in a From this dataset, we create graphs of the connections
guilt-by-association attack in Sec. 3. To mitigate thigdty ~ °€tween peers. Namely, for each day of the month we
Sec. 4 discusses an approach that weakens and disrufSi§nerate a graph, where each node is a peer that is online
community analysis by generating random connections. 1§Uring that day and each edge indicates that there was at
Sec. 5 we present the design of a system to implement thi€ast one connection established between the corresgpndin
strategy. We describe and evaluate our implementation df€ers during that day. To avoid issues with users that
the approach in Sec. 6. Finally, we cover related work inconnect at regular intervals (e.g., those that connectever

Sec. 7, discuss open issues in Sec. 8 and conclude in Sec.2Aturday), we aggregate the information into four weekly
graphs. These graphs consist of weighted edges where the

o ) weightw;; between nodesand; indicates how many days
2 Communities in BitTorrent this pair of users have repeated a connection between them.

Figure 1 plots the number of peers and connections per day
In this section, we describe our dataset, which containgjuring the observation period.

connection information for 10,288 peers during a one-
month period. We use this information to form a graph . .
and anzlyze its properties in terms of modularity g iz.,z'z Extracting Communities

whether there are distinct communities in which usersin social networks, individuals decide with whom they
connect to each other more often than to users outside thgant to establish connections, so communities naturally
community. Despite the fact that the BitTorrent protocol appear. These communities are usually a reflection of
relies on establishing connections at random, we find strongast or present geographical colocation, shared inte@sts

communities of shared interest in content. co-membership in organizations, and manifest themselves
in the network as groups of nodes that are more densely
21 Dataset connected to each other than we would expect by random

chance [1, 40].
The data used in this study is collected from BitTorrent In contrast, nodes in many P2P networks, including
end-users during the month of March, 2008 (31 days)BitTorrent, establish connections according to a predéfine
Our dataset contains information about P2P connectionprotocol that selects peers at random from a pool of eligible



hosts. This observation may lead one to conclude that Community
community structure will not be significant in P2P net-

works. However, much as in social networks, the existence
of a connection between two users in a P2P network isa 2
reflection of shared interest — in BitTorrent, a connection 3
between two users indicates concurrent shared interest in

20

at least some content. In this section, we show this shared %’ 5 15
interest is sufficient to form strong communities of users in g .
the BitTorrent network. =

The problem of community detection in graphs is NP- 3 10

hard, since the space of possible partitions of nodes into 7
communities scales faster than any power of the system size

[4]. Part of the difficulty stems from the fact that the number 8
of communities and their sizes are, a priori, unknown,
which makes the problem of community identification
qualitatively different from, and more challenging thdme t
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Figure 2: Density of connections within and between communities

WT_StUdled ?rlaph [:r)artltrl]ofnlpg ﬁ)\l;ic;]bhiz]' mmunity identi (relative to the average density of connections in the network) in
successiul approach for solving the co unity iaenti-,, o weekly network built from March 22nd to March 28th. Each

ficatipn problem is based on the mgximization ofa q_ua”tyrow (column) corresponds to a community, and the height (width)
function M, usually called modularity [27]. For a given ingicates the size of the corresponding community. The density of
partition P of a weighted graph into communities, the connections within communities is typically 5 to 25 times higher

modularity is defined as than between communities.
1 8i8; ) L L .
M(P) = —~ g {quj - 7} Omimy (1)  We find that the density within communities is typically 5
2L 4 2L . . .
ij to 25 times higher than between communities. Although

suggestive, these values do not necessarily mean that the
communities we identify are significant [18]. To address the
issue of significance, we compare the maximum modularity
we obtain for this network to the same for an ensemble
of randomized networks in which users connect with a

The modularity function is a relative measure of hOWunlform probability to each other (preserving the number of

much edae weiaht falls within communities. as o Osedponnections of each user). We find that the real maximum
9 9 ' PP modularity of the graph i1 = 0.439, whereas the average

to between communities. If there were no communities in . . . X
. maximum modularity of the randomized networks\i¢ =
the network, the total connection strengthof each node

would be evenly distributed among all the other nodes, 58'168 with a standard deviation 00.0012. With the

. . real modularity more thag50 standard deviations larger
that the weightsw;; would be proportional tos; and s; :
i " . -7 . than the random expectation (> 250), we can safely
(more preciselys;s;/L). Positive modularities thus indi- . - R
. " conclude that the discovered communities are significant.
cate systematic deviations from the perfectly homogeneou

o For comparison, the modular structure of the world-wide
null model, whereas the modularity is close to zero for a

random partition of the nodes into communities. when aIIair transportation network (of commercial flights between
P ' cities) has: ~ 430, whereas the modularity of the Internet

ners are in the same community, or when each node is |gt the autonomous system level has 80 [17,19].
a different community.
Maximizing modularity exhaustively is intractable due to
the combinatorial number of possible ways in which one3 Community-Based Attacks on Privacy
can partition a graph into communities. Therefore, we
use a heuristic approach to efficiently explore the spac&he BitTorrent network is already under privacy-intrusive
of possible partitions. Specifically, we use the extremalattacks that entail using trackers and participating (eygu
optimization algorithm proposed by Duch et al. [12], which clients to identify users that share particular conterd.(e.
provides a compromise between accuracy and speed [Yo detect violation of copyrights). These attacks are kahit
We have validated its results by comparing them with moreby a number of factors, such as the need to monitor a large
accurate algorithms such as simulated annealing [16] andumber of trackers, the challenge in properly identifying
found they were nearly identical. a large number of torrents for targeted content and the
We use the extremal optimization method to investigatgoroblems associated with running a large number of rogue
the community structure of the weekly graph that spanglients. In this section, we describe an attack that elitesa
from March 22-28. Fig. 2 shows the density of peer con-many of these restrictions by exploiting the BitTorrent
nections that are inside and outside of their communitiescommunity structure.

where the sum is over all nodes;; is the weight of edge
(i,7), s; is the sum of the weights of all of nodis edges,
L =3, s;, m; is the community to which nodebelongs
(in partition P), andd;; is the Kronecker symbob, = 1
if a = bandd,, = 0 otherwise).



P2P System

3.1 Discovering user connections

There are several methods that attackers might use to mon-
itor the content downloading activity of BitTorrent users.
For instance, they can monitor information collected by
trackers, acquire sets of peers connected to their neighbor
via the Peer Exchange (PEX) protocol [8] or crawl the
BitTorrent DHT for lists of peers connected to a particular
torrent. In the case of monitoring trackers, an attackeldcou
essentially reveal the entire network of connections, naki

it trivial to determine the community structure of users.
Figure 3: Diagram indicating how an attacker (or set of attackers)To determine the limits of the guilt-by-association attack
infiltrate a P2P system for the purpose of ldentlfylng user aCtiVity.Strategy’ we ana|yze a worst-case scenario for attackers’

The attacker makes connections at random, many of which argnere an incomplete view of the connectivity patterns in
not useful, but meanwhile it collects the information about theBitTorrent is revealed

structure of the connections of the P2P network. Once the attacker - .
has classified a group of nodes into a community, the attackin To this end, we model an attacker that crawls the BitTor-

host on the top right can classify an entire community of users b ent r_Wetwork to obtaln as much conn_ectIVIty information as
observing a single targeted peer. possible. In particular, an attacker implements a breadth-
first search approach to find all users within a distahoé
a rogue client, as acquired through the PEX protocol. By
using multiple rogue clients, the attacker should be able to
As we demonstrated in previous sections, nodes in thghcrease the coverage of peer connections.

BitTorrent network form well-defined communities of 14 gemonstrate the effectiveness of such an attack strat-
shared interest. Given this, an attacker who identifies th%gy, we seleclV' = 1,2, 4,8, 16,32, 64 nodes uniformly at
content that a BitTorrent user is sharing can determingangom from each of the weekly BitTorrent networks and
that all users in the same community are doing the sam@etermine the fraction of nodes that they could collectivel
without monitoring them directly. We refer to this as guilt  monitor within a distancel of all attackers. We repeat

by association attack — as first proposed by Cortes et al. [7] this Monte Carlo sampling 100 times to obtain reliable
for identifying fraudulent callers in a phone network. We gstimates of how much information a small set of attacking
will show how this enables a small number of attackers tg,odes could gather with such an approach. Figure 4a shows
classify large numbers of peers. the fraction of exposed nodes for a different number of

To realize this attack, we assume a threat model tha?_tta?kers wﬁhln%a n;)onltorlng distande In this C?(S)f/' af I
comprises two phases. First, the attacker attempts tg'ngle attack node observes, on average, over o ora

discover as many connection patterns as possible, then usggdes V;'tt?'n a dIS”ta].-I’;/Cé fé 3 andba coordinated attack
this information to identify communities of users that shar moc:;nt? I yadsma. hi 00 dno es@g<32erves, on average, over
interests. There are several methods for discovering thg 0 of all nodes within a distanees 2.

structure of network connections among P2P clients. The Of course, to optimize their effectiveness, attackers ex-
ideal case would be a global monitoring system that isolomng a breadth-first search strategy should try to cohne

capable of tracking all the activity of every peer in the to as many users as possible to be able to monitor, first-

network, obtaining complete information about the systemNand. as much of the network as possible. We demonstrate

However, in general, monitoring every peer in a popularthe effectiveness of highly connected attackers by selgcti
P2P system is intractable for reasons of scale. A viapighe vV = 1,2, 4.8, 167?_’2’64 most connected nodes_ from
option is to use a local discovery method to uncover theeaCh_ of the weekly BitTorrent networl@ to detgrmlng the
structure and the patterns of connections between usergaction of nodes that they could collectively monitor viith
The attacker can deploy a number of participating clients t¢* distanced of all of the attackers. Figure 5a shows
infiltrate the P2P network or sniff packets from a number ofth€ fraction of exposed nodes for a different number of

monitored hosts to observe connections. Figure 3 portray@ltackers within a monitoring distanek in this case for
{ighly connected attackers. Here, a single attack node can

this aspect of the threat model, where attackers parteipa 2 :
in the P2P system via rogue clients. observe over 80% of the network_ w|th|n a distancel 2
and almost all of the network within a distande< 3.

In the second phase, the attacker can extract communitiess the figure clearly shows, monitoring coverage becomes
of shared interest for guilt by association. This can bemore extensive the larger the fraction of attack nodes.
accomplished using the same heuristic that we employed As these very simple strategies illustrate, an attacker
in the previous section to find modularity in the network. can reveal a large portion of the BitTorrent network’s
Because their analysis may be based on an incompletonnectivity patterns without centralized informatioroviN
information, we study the effectiveness of classification i we examine how this incomplete information can be used
this context. to determine community structures.

Peer

E Targeted Peer

E Attacker
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Figure 4: Fraction of exposed nodes and edges when a small sEtgure 5: Fraction of exposed nodes and edges when a small set
of N = 1,2,4,8,16, 32, 64 attackers can monitor all nodes and of N = 1,2,4,8, 16, 32, 64 attackers can monitor all nodes and
edges within a distancé over the course of a week. Attacking edges within a distancé over the course of a week. Attacking
nodes selected uniformly at random. Symbols denote averageodes are the set @f nodes with the largest degree.

over 100 Monte Carlo realizations and whiskers denote 95%

confidence intervals.

3.2 Detecting community structure

modularity partitions{ Py, P,, ..., Pr}. We then assume
thati and;j can be confidently associated with each other if
hey are assigned to the same community at leashes.

In the next step of the guilt-by-association attack, the at
tackers attempt to identify communities of shared intetest
If the attacker has access to global information about th .
whole network, the community detection algorithm we e choosel? = 10 and explore two different thresholds,
described in Sec. 2.2 accurately identifies communitied — 5 andr = 8.
of interest. We now address the issue of the accuracy
of community detection in the presence of incomplete Based on the analysis in the previous section, Table 1
information. showsp calculated for different values of the fractignof
To this end, we analyze the reliability of an attacker’s attackers that monitor nodes and edges within a distance
inference of the community structure based on a partiali for the weekly network during March 22-28. For= 8,
reconstruction of the network. Specifically, we measure thave find that if0.01% of the nodes in the graph are attackers,
probability p that two nodes are coclassified in the samethey are able to correctly coclassify users into commusitie
community in the real network given that they are coclassi-more than 85% of the time fod < 3. If 1% of the
fied in the same community in the partial reconstruction. nodes are attackers, they can achieve the same accuracy
Since the community identification method is not deter-for community detection by only monitoring users that are
ministic, however, two users are not necessarily assigned twithin a distanced < 2. We find similar results for
the same community by extremal optimization. Given thisattackers that use a more relaxed threshold for assigning
variability, one must determine how to confidently assignusers to the same community (= 5): p = 0.819 for
usersi and j to the same community. To address this f = 0.0001 andd < 3, andp = 0.805 for f = 0.01
issue, we run extremal optimizatidhtimes to obtain high- andd < 2.
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Table 1: Similarity between the community structure of the real
network and a partial reconstruction of the network discovered
using a fractionf of attackers that observe to distanteHere,

o
&

+ ; ; [T I T N I T T N
we define two users as being in the same community if they are % 50 100 150 500

coclassified inr = 8 of R = 10 runs of extremal optimization. % Added Edges

We measure the similarity by the the probabilitythat two

nodes are coclassified in the same community in the real networkigure 6: Undetectability of a user when varying the percentage of
given that they are coclassified in the partial reconstruction of theandom edges added. This measures the probability that any two

network. users are detected in the same community after random edges have
been added, given that they were detected in the same community
4 Hiding in the Crowd before doing so.

In the previous section, we showed that a very smal@ttacker would incorrectly infer that two users are in the
fraction of attackers can easily discover the network ands@me community more tha0% of the time. Forr = 5, the
accurately infer the community of each user. This clearlySame result is achieved with as few5&$s random edges.
demonstrates that guilt-by-association attacks are a real Second, we measure thieniability of users, i.e., the
threat to the BitTorrent community and, more generally,Probability that any two users are not detected in the same
P2P systems. The success of this attack strongly depeng§gmmunity before adding edges, given that they are in the
on the assumption that attackers can reliably infer usef@me community after adding random edges. That is, if an
interests based on the connections that they have with othéittacker found two usersand j in the same community
peers. We posit that the best defense against this attagéter adding random edges, deniability quantifies theilikel
is simply to introduce noise such that this assumption nd0od that an attacker would incorrectly determine treatd
longer holds. Specifically, our approach is to add randony in the same community. Figure 7 shows how deniability
edges to disrupt an attacker’s ability ) €orrectly infer ~ increases for the same two threshotds- 5 andr = 8 as
real connections and thug)(infer community membership. more random edges are added. For both thresholds, adding
To determine the effectiveness of our defense strategy’rz()% additional random edges increases the deniability to
we simulate adding a varying number of random edge§>0%- Because this means that classifications made by
between nodes. Since we expect that exceptionally activattackers are wrong the majority of the time, this approach
users will have more incentive to hide their connectivity Significantly reduces their credibility.
patterns than infrequent users, we add random edges pro- These results demonstrate that by adding only a few
portional to the number of edges of each user. Specificallyjandom edges (as few a€) — 20%) we substantially
we add a varying percentage of random edges to the weekf{icrease the privacy of the user in two different ways. For
graph during March 22-28, and we see how effectively arPne, we increase the difficulty of correctly associatingsise
attacker can correctly infer the real community structire o that share the same type of content; further, we reduce the
the resulting graph. We quantify the effectiveness of thiscredibility of guilt-by-association attacks.
method with the following metrics.
First, we measure thendetectability of users, which
we define as the probability that any two users are not

detected in the same community after adding random edgeg, the previous sections, we showed that P2P systems,
given that they are identified m_the_same community beforey .y BitTorrent specifically, are susceptible to guilt-by-
adding random edges. That is, if an attacker found tWo,gqqciation attacks and we developed a simple, yet eféectiv
usersi and j classified in the same community Without gy ateqy to defeat this threat. We now describe the design
adding random edges, undetectability quantifies the likegs gywarmScreen— a system that realizes this strategy in
lihood that an attacker would correctly identityand j BitTorrent.

in the same community after adding random edges. In s 5 high level, the goal of SwarmScreen is to disguise
Figure 6 we demonstrate that r.andom edges increasqier hehavior by connecting to hosts outside of the user’s
undetectability for users. We again present the results foEommunity of interest. To achieve this goal, our software

two different thresholds for community detection, a more nnecys to users of torrents selected automatically at ran
restrictive one withr = 8, and a less restrictive = 5.

For - = 8 and only 10% additional random edges, an  !The software name has been changed for double-blind review.

System Design




L L L BitTorrent client. By operating at the level of managing
torrents, our software can be provided as a non-invasive

08 extension to existing clients. As we discuss in Sec. 5.3,
- it also provides intuitive control over privacy/perforntan
=06 trade-offs.
<
$ 0.4
o Incrementally deployable. Our software should work

well regardless of how many users adopt the system. In
contrast, anonymization systems require a reliable set of
altruistic relay nodes to carry traffic anonymously. Like-

I T T T A T |
0 50 100 150 200 wise, closed file-sharing networks (e.g., OneSwarm [22])

O"'I"'

% Added Edges are limited by the content and performance available in the

Figure 7: Deniability of a user when varying the percentage ofPTivate network. Our approach relies only on a diverse
random edges added. This is the probability that any two user§et Of publicly available torrents and a large number of
are detected in the same community before adding random edge4/0orldwide users actively using BitTorrent — both of which
given that they are detected in the same community afterward. are available today.

dom. While this approach can hide a user's communityPractical incentives. Any extension to an existing, pop-
of interest, a simple implementation that adds a largeular service should provide subscribers with proper in-
number of random torrents will lead to poor performancecentives without undermining the performance of nonsub-
for the user-generated torrents — those torrents must adicribers. In our approach, subscribers bear the burden
share a fixed amount of bandwidth. Worse yet, suctof reduced end-to-end performance in proportion to the
an implementation can actualhgduce privacy by raising level of privacy that they gain. Nonsubscribers also benefit
suspicion — a user generating an unusually large number dfom this service by receiving a certain level of additional
connections may appear to be hiding something. privacy from subscribers participating in their torrents.
SwarmScreen addresses these issues through two poMoreover, the software actuallynproves performance for
cies. First, our software allows the user to directly specif nonsubscribers (at a global level), because SwarmScreen
the desired trade-off between performance and privacyusers contribute their bandwidth to the random torrentgs the
Based on this setting, SwarmScreen provides attempi®in. This is in contrast with systems that enable privacy
to obfuscate user-generated torrent behavior within thehrough “cover traffic” that is dropped along paths between
performance constraint. Second, instead of hiding comsenders and receivers, and thus results in wasted bandwidth
munities of interest in a large sea of random connections,
our software induces connections that mimic those from gyotocol compliance. Our approach does not require

user's community of interest. In this way, the user's covermqgifying the BitTorrent protocol to preserve privacy be-
traffic can be made statistically indistinguishable from it ~5,se it relies on connecting to a set of real, live torrends a

real traffic. exchanging data with other peers. The only requirement is

We note that SwarmScreen is designed as a new privaGat data for torrents not requested by the user can be placed
layer, and is not intended as a replacement for existingy, transient storage.

approaches to privacy in P2P systems. As we discuss
later in the paper, connection encryption and anonymou .
forwarding of HTTP requests strengthen our system again .2 Architecture

attack. In the following sections, we describe Swarm-gigure 8 depicts the architecture for our privacy-

Screen’s goals, architecture and design challenges. enhancing BitTorrent extension.  The user specifies
the torrents to download and privacy settings that guide
5.1 Goals the privacy/performance trade-off. The privacy manager

) _ ) _ then adds to the user-specified torrents a set of randomly
In this section, we explain the four primary goals of the gg|ectedransient torrents that the client will join but not
SwarmScreen design. To facilitate adoption, our systeMore persistently. As the downloads progress, the privacy
should be minimally invasive to existing clients, provide manager rotates the active set of torrents and connections i
practical incentives and be easy to use and install. Fyrtheg, yyay that obfuscates any patterns in connection behavior.

our system should be incrementally deployable to ensure it$he BitTorrent protocol itself remains unmodified.
effectiveness across a wide range of adoption rates.

. . : . 5.3 Challenges
Easy to use and install. To facilitate adoption, a privacy 9

system should be easy to use and install. One way t®Vhile the high-level architecture for SwarmScreen is os-
achieve this goal is to piggyback on an existing, popularttensibly simple, we discovered and addressed several im-



User encryption (a feature supported by most BitTorrent clignts

Simply adding large numbers of random connections,
however, is not sufficient to evade attack; after all, an gave
\J dropper may simply look for an excessively large volume of

. connections to identify targets for further surveillande.

User-generated Transient . ; .

torrents torrents provide even more protection, the connections generated by
SwarmScreen should be statistically indistinguishatdenfr
\ / those generated by user-selected torrents.

To ensure that SwarmScreen-generated connection pat-
terns are similar to those for user-specified torrents, we
must define a notion of similarity. A simple approach is to
Lo Connection ensure that the time spent in connections to random torrents

L is similar to those for user-specified torrents. Alternetiiy
i the software can ensure that the distributions of connectio
durations for each category of torrents is identical, or
emulate the distribution of bytes transferred over each
connection.

Download

requests Privacy setttings

Privacy Manager

BitTorrent
Protocol

Downloading random content. An important issue for
any system that automatically transfers random content
Figure 8: Architecture for our privacy-enhancing BitTorrent is determining the source of that content. In BitTorrent,

extension. Key system components are located in the gray bolocating content in a fully automated way is difficult be-

note that because our approach operates above the protocol lay6AUSE content metadata is separated from the protocol that
it avoids invasive client modification. transfers its data. Further complicating the issue, it is

well known that a significant portion of content available
portant challenges during our design and implementatioﬁhrough the protocol may be subject to legal restrictioms fo
of the system. distribution. Thus, even if content is located automalycal

transferring the content may subject the user to prosetutio

The case law on this issue varies from one jurisdiction
their users when they perform poorly, are difficult to to another, and the legal environment surrounding online

use and/or are misconfigured. SwarmScreen addressgontent distribution is dynamic. As explained by Bauer

these issues through a simple interface that allows useres? a_1|. [2], the Iegal disposition of a system t_hat forwards
. . arbitrary content is far from settled — this issue affects

to select a privacy/performance trade-off from an integer :
any open relay systerh. One solution, adopted by users

h Il th P ion F ‘ )
space that we call the SwarmScrgen rotection act%rf PlanetLab, is to download and discard torrent data, thus
(SPF). Analogous to the Sun Protection Factor, a value of L T
ever uploading it. Unfortunately, this violates the gofal o

indicates no protection and small values (less than 35 or 5 hconspicuous behavior — it is trivial to identify usersttha
indicate that sustained exposure with these settings ma|¥ P
ever upload content.

lead to privacy violations. Further extending the analogy, ) ) i )
P y d gy Because there is no universal solution for this problem,

one can set SPF values of 100 or higher, but the returns in ¥ d . h find d
protection diminish. In the next section, we discuss hOWW‘ha allow users to e:]er'mme Vr\: ere to hmf content an
we use SPF to explicitly control privacy and performance. where 1o store It on t_ €I machines. N € former option

In addition to providing an intuitive mechanism for allows users to specify sites that contain only torrents

setting privacy levels, our system must give user feedbacﬁ:"at can be Ier?ally retrrz]';msmltted while the”forgﬁer :lstllozjvsd

to ensure that those levels provide the expected level o e user to choose w ere to storel p{:}rtla y OWE oahe

protection (i.e., so the user does not get burnt by privac ontent (e.g., on a persistent or vo agg store). Further,
ecause the transient torrents are explicitly not conteatt t

violations). To address this issue, SwarmScreen displa sh to k S S ¢ hem for fini
statistical information about real-time privacy levelsthe ~ US€'S WIS to keep, Swarmscreen transfers them for finite

user. A user uncomfortable with current privacy IeVelsduratlons and immediately deletes content upon completion

can simply increase the system’s SPF until achieving th@nd when the user’s session ends. Note that this approach is
desired protection not particularly conspicuous; after all, the selfish bebavi

of BitTorrent users is well documented [28]. We also

o . . . emphasize that deleting a file upon completion does not
Being inconspicuous. SwarmScreenimproves privacy by prevent the user from uploading content to other users —
inducing connections to peers in random swarms. To ensure

that an attacker cannot detect the torrent to which each 2tne authors note, however, that US law allows caching and
data packet corresponds, a user should enable connectiefransmission of unmodified files.

Privacy/performance trade-off. Privacy systems fail




any completed file pieces are made available to the swarrspace only for the pieces that have been downloaded. This
during the downloading phase. approach would significantly reduce storage requirements,
and could allow transient torrent data to be sufficiently
compact to fit entirely in volatile storage (e.g., DRAM). At
the time of submission, we are working with the Vuze team
to add support for this feature in their client.

6 Realization in BitTorrent

In this section, we discuss the implementation of our
approach to improving privacy in P2P systems through an

extension to a popular BitTorrent client. We then evaluateConnection profiling. - A key goal of our approach is that
this implementation in terms of privacy and performanceit Obscures a user's communities of shared interest without

overhead. appearing to do so. In particular, the connection behavior

generated by SwarmScreen should be statistically indis-

) ) tinguishable from user-generated behavior. To determine

6.1 Implementation Details whether this is the case, SwarmScreen monitors its client’s
connections. At a regular interval, our software polls

SwarmScreen is currently implemented as a plugin (i.e., :
extension) for the popular Vuze BitTorrent client, which PE€rs connected to user-generated and transient torrents

facilitates user adoption by providing an interface for our!® detérmine the total time spent in connections for each
software to be installed without any modifications to the ©ategory- _ _
mainline client. At the time of submission, our plugin is ' Nis data allows SwarmScreen to determine the ratio

publicly available on our project webpage and it has bee®f time spent connected to transient torrents versus the
accepted for inclusion on the Vuze official plugin fst. same for user-generated ones. Based on our goal of

Our implementation is written in Java, which enables itinconspicuous connections, this ratio should be kept near

to run on nearly every operating system. The core funcl:0- The ratio is displayed to the user for monitoring real-

tionality contains approximately 2,100 LOC and has beerfiMme protection levels.

released under an open-source (GPL) license. Throughout

this section we mention configurable parameters as paforrent scheduling and shaping. When a user is down-

of our implementation; their current values are listed inloading content, SwarmScreen induces connections by ac-

Table 2. In the remainder of this section, we describetivating torrents. While the transfers progress, our saftwa

several key implementation details. adjusts the number of active torrents and their maximum
transfer rates to meet the privacy/performance trade-off

Fetching torrents. As discussed in the previous section, specified by the user.

SwarmScreen requires the user to select one or more Web As we shoyved n Sec. 4, increasing t.h'e number ‘?f ran-
pages containing links to torrent files. At uniformly random 90m connections increases undetectability and deniabilit

intervals (currently with a 1-hour mean), SwarmScreenfOl community analysis. To add random connections in

connects to these pages and downloads a list of linkBitTorrent, SwarmScreen joins additional swarms. Because
for torrents. To enhance privacy and to evade detectionthe BitTorrent protocol is nondeterministic in terms of
communication between a user and the Web server shoufb‘e number of connections established, it is difficult to

be protected. Our software allows users to speletfy ps precisely control the percent of random connections in
sites so that the connection is encrypted. If needed, thgWarmsScreen. We observe, however, that the Vuze BitTor-

user can tunnel these HTTP connections through Tor ofeNt client by default places an upper bound on the number
other anonymization networks to fetch the Web pages _of connections established per torrent. When this bound is

the fetching of random content is separated from the datd:eached' the fraction of raqdom torrents Is the same as the
transfer protocol. fraction of random connections. Based on this observation,
Once the links to torrent files have been fetched from thé"® approxmat_e control of randorr_1 _connectlons through the
specified Web pages, SwarmScreen selects torrents froffMper of active torrents. Specifically, SwarmScreen by
this set at random. In practice, we have found that thdlefault addsSPF percent random torrents to the client.

storage space required for any given torrent varies widel>aS€d on our analysis from Sec. 4, we set the default SPF

from tens of megabytes to tens of gigabytes. Our currenYalue to 50, which provides at least 50% deniability for

implementation addresses the associated storage capacity . ) ) i
issue by allowing users to specify a maximum file size If torrents do not use all of their allotted connectionssthi

for torrents to use. Any torrents with files larger than the@PProach may not provide the desired privacy level. Thus,
maximum size are not selected. SwarmScreen currently monitors the ratio of connection

There are many alternative ways to address the issue §{nes. and usesitto the drive a feedback loop for ensuring
limited storage. For instance, some BitTorrent clientagot 1€ @ppropriate amount of cover traffic. Specifically, we

than Vuze) assemble files incrementally, requiring storag&€fine an acceptable rangg.i, > r > 7mqs and the
software attempts to keep the ratio within the range. If

30fficial plugins are signed to ensure their integrity. r < Tmin, SWarmsScreen adds more transient torrents to




| Parameter | Value |

SPF 50
Connection ratio thresholds,fin, rmaz] | [0.8, 1.2]
Maximum torrent size 1GB
Torrent scheduling interval 15sec i)
Torrent fetch interval (mean) 1 hour &

Table 2: Key settings in our current SwarmScreen implementa-

tion. Parameters in bold are user-configurable parameters. Disabl?zdngt)lle% —
0 L L | L
0 10 20 30 40 50

increase time spent in connections for random torrents. It
also increases the time spent participating in each transie
torrent — in essence, buying time for more connections t@igure 9: Timeline showing how the ratio changes without using
be established and used. Both the number of transiergwarmScreen to adapt for At t = 15 minutes, we disable
torrents and the time spent connected to them are directigwarmScreen for the experiment with the solid curve. Without
proportional tor,,;,, — r. Thus, as the ratio falls farther the feedback loop, the ratio of durations for random connections to
from the acceptable range, SwarmScreen works harder téser connections increases dramatically, leading to identification
bring the ratio back. Because the random connections caffrough conspicuous behavior.
outnumber the user-specified ones, SwarmScreen similarly
reduces the number of active transient torrents and thand used two popular Linux distributions as the user-
duration that they are connected wher r,,,4,. generated downloads.

It is important to note that if user-generated torrents are

always connected, their communities of interest can easil)gixed downloads and SPF. We begin our analysis by

be extracted from the random nmse_that SwarmScree valuating how well SwarmScreen provides privacy with
generates. Our software addresses this issue by rando

) : - fixed number of downloads (2) and SPF value (100).
pausing and_resummg user-generated_ torrents, similar %he dashed curve in Fig. 9 shows how the connection ratio
_the way that it "%dds and removes transient torrents. It als_ghanges during a 60-minute session. Initially SwarmScreen
increases the time that user—generated torrents are aCtIYI%lfﬁC charges ahead of user traffic, then quickly recovers
whenr > 7, and decreases it When< rin. to provide relatively even connection rates within a few
Finally, SwarmScreen uses the SPF value to control the,in jtes. Note that it is normal for ratios to fluctuate during
overhead imposed by the system. To limit the impact on,,y nortions of a session because the total time spent in

transfer rates, the SPF value is interpreted as the maXimu%nnections is small relative to the amount of time added
percent overhead that transient torrents can impose on Us8f each sample.

generated ones. At any interval, SwarmScreen sets a CaP 14 demonstrate that it is not sufficient to simply add

on the bandwidth for each transient torres, using the random torrents without controlling for the statisticabps
formula: SPF S B erties of their connections, we repeat the same experiment,
= —— 2 Bu (2)  butthis time we disable SwarmScreen’s control mechanism
100 NV att = 15min (solid curve in Fig. 9). Soon thereafter, it
where " B, is the sum of the bandwidth,) for each  appears that the random torrents have achieved a balance
user-generated torrent ardd, is the number of transient with the user-specified ones. However, within a couple of
torrents currently active. minutes, the portion of time spent in connections to random
torrents rises compared to the user-specified ones, and over
. time this discrepancy grows quite large. Because this
6.2 Evaluation represents vastly different behavior than the user-sgecifi
rrents, itis likely that an attacker would be able to dfgss
e user as conspicuous and thus target that user for more

Time (min)

To demonstrate the effectiveness of SwarmScreen, we evatﬁ
uate its performance in terms of privacy, performancet L
and responsiveness to changing conditions. We measuPéjvanced statistical attacks.
privacy in terms of the connection ratio as described in the
previous section. By tracking the ratio over time, we canFixed downloads, vary SPF. In this experiment, we use
observe the responsiveness of SwarmScreen to changitige same two fixed user-selected torrents but vary the SPF
conditions. To measure performance, we use the ratigalue across sessions. In Fig. 10, we plot a timeline of the
of throughput for user torrents to the same for transient values for SPF 10, 50 and 100. The figure shows that
torrents. larger SPF values allow SwarmScreen to adapt to changing
All of the tests were performed using Vuze 4.1.0.0conditions more rapidly, while lower SPF levels cause
running behind a residential cable Internet connectionslower reactions to changess;inOne way to determine the
Unless otherwise indicated, we used an SPF value of 10Bnpact of these different settings on privacy is to calailat

10
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Figure 10: Timeline showing how different SPF levels affect the Figure 12: CDF of bandwidth allocation ratio samples for SPF
ratio of connections. Lower SPF values cause SwarmScreen tealues of 10, 50 and 100, corresponding to maximum allowed
react more slowly to changes in For SPF 100, the amount of ratios of 0.1, 0.5 and 1.0. The caps are met most of the time,
time outside the acceptable range fors 10%; for SPF 50 the though there’s varying degrees to which the allocated bandwidth

value is 27% and more than 50% for SPF 10. is fully utilized.
2 ‘ ? ‘ ? ‘ advantage of Vuze'’s built-in support for limiting the tréers
: : rates on a per-torrent basis. Thus, the effectiveness of our
15 } } 1 implementation is primarily limited by the responsiveness

of our system to changes in bandwidth and of Vuze to

o
Es 1 changes in bandwidth caps. Figure 12 shows a CDF of
the ratio of bandwidth consumed by transient torrents to
0.5 the same for user-selected torrents. We sample transfer
: i rates every 5 seconds for three 30-minute sessions: one
0 : : : % : for each SPF value in the set §10, 50, 10Q. According
0 ° 10 15 20 25 to Eq. 2, the ratio of bandwidth allocated to transient and
Time (min) user-specified torrent®),, should be less tha$PF /100:
Figure 11: Timeline of similarity of total connection durations and R, — > By < SPF

distributions of connection durations while varying then number - S°B, — 100
of user-selected downloads. Each vertical line indicates the time . . o
at which another user download is added. We add vertical lines at = {0.1, 0.5, 1.0} to highlight the

target values for each curve. The figure shows that the vast
the amount of time the system is outside the acceptabl@ajority of samples fall within the target range for all oéth
range forr for each SPF value. We find that with SPF download rates (87.5% to 95% of the values). For uploads,
100, 10% of the time is spent outside the range. This timdhere are sllg_htly more violations; this occurs because the
increases by nearly a factor of three for SPF 50, and for SPEPI0ad capacity is about an order or magnitude smaller than

10 the system spends the majority (51%) of the time outsid&® download capacity, meaning small absolute differences
the acceptable range. in upload bandwidth lead to larger relative differences.

Even when the bandwidth ratios exceed the target value,
i . the violations are not generally large.
Vary downloads, fixed SPF. The goal of our nextexperi-  Note that the variance in ratio values increases as SPF
ment is to determine how SwarmScreen adapts to changingreases. This happens because large bandwidth alloca-
workloads while providing acceptable privacy levels. Toyjong for random torrents may be underutilized if there is
test this, we vary the number of downloads (from one toj,g fficient bandwidth available in the associated swarms.
three) while keeping the SPF fixed at 100. Fig. 11 show§y, his case, our user-specified torrents were Linux dis-
that oursystem maintains acceptable levels of privacy eVefliputions, which are hosted by many peers located in
vv_hen the user increases the number of torrents that must t\’/@ell—provisioned university networks with high available
hidden. bandwidth. As a result, the bandwidth received from these
torrents was often greater than the same for random (non-
Controlling performance overhead. We have shown Linux) torrents, leading to many ratio values less than
that SwarmScreen can provide acceptable privacy in 8PF/100. There are several ways to address this issue. For
variety of scenarios; now we determine how well it boundsone, SwarmScreen can attempt to restrict transient t@rrent
the overhead imposed by cover traffic. Specifically, forto those in its random set with similar swarm bandwidth
a given SPF value, we determine how well the systemavailability. If this is not feasible, SwarmScreen could
satisfies Equation 2. Our current implementation takeshape the bandwidth allocated to user-specified torrents to
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match the same for transient torrents. As this policy wouldimited by the set of trusted hosts. Further, closed net-
change the interpretation of SPF, we plan to make thisvorks often suffer significant performance overhead from
option available to users but disabled by default. the multiple overlay hops required to anonymize senders
and receivers. Finally, these “networks of friends” are
susceptible to community-based classification as destribe
7 Related Work in this paper (i.e., the network is the community) and the
) . guilt-by-association attack.
P2P systems have been the subject of numerous StUdIes‘Statistical disclosure attacks are closely related to our

Our work falls intp the category of studies Fhat use IiveWork [25]. Their goal is to determine the set of message
dat?( toh_drlve th(?r results [S, 20, 28_]'_ L:cnllke dprbewr(])us recipients for a particular target node in an anonymity
woeréFt> IS papekr OClljseS on c<|)mmun|t|es Iormeh yh_oks]t%etwork. Unlike this work, our approach allows an attacker
In networks. In particular, we analyze how high-, identify arbitrary recipients; however, we provide pigy

level communication patterns reveal information that can, obfuscating which recipients are in the target's commu-
be exploited by eavesdroppers and develop techniques ty of interest. Obfuscation can provide privacy by ob-

thwart such attacks. ) , scuring high-level structure in data sources. This tealmiq
A common approach to enhance privacy in networkedg commonly used to hide trade secrets in executable code,

systems is to use encryption (e.g., with symmetric keys), o 1y modifying an instruction stream to make it more
to secure the contents of a data stream between tWo engjiic it to reverse engineer automatically [30]. Unlike

points. While this makes it prohibitively expensive for an ,p,scation in instruction streams, our system hides user

eavesdropper to obtain the plaintext data stream, it do8§ghavior using online techniques, and eliminates wasted
not necessfauly prevent an attackerlfrom determlnlnlg theesources at a global level by participating in real tosent
contents of that stream. For example, Saponas et al. [35] o, \ork is inspired by several projects that share its
demonstrated several classes of devices and attacks th&aﬁirit but are applied in different contexts. Cortes et

allow an attacker to obtain information about _users_. Inal. [7] describe an approach for identifying communities
particular, they show that an eavesdropper can identify thgy interest, but this was intended to identify fraudulent

video being watched simply by observing patterns in the en allers in a phone network. Li et al. [23] describe a crowd-

crypted Slingbox data stream. In a similar vein, we showe ased approach for protecting privacy in data streaming
that an attacker needs access only to connection patter%?;plications Finally, Crowds [33] hides a user's Web
_(encryptepl or not) to classify_users. Thus, encryptionalon request in a crowd of other requests for the same content;
is not sufficient to address this class of attacks. similarly, our work provides a degree of privacy by hiding

-Anothe.r privacy Igyer 'S anonymizatiqn, which entails user-generated BitTorrent traffic in a crowd of traffic for
disassociating user-identifiable information from networ - 4om torrents.

flows. There have been many approaches to providing this
service, for communication channels [14, 36], content-stor
age [6, 10, 37] and both [24]. Onion routing [32] attempts8 Discussion and Future Work
to provide anonymity of senders and receivers by sending
data over multiple overlay hops, with each hop providingAny distributed system implicitly reveals information atho
another layer of anonymity. A popular implementation of the participating user; in this paper, we focus on one such
this approach is Tor [11], which focuses on providing acase in the BitTorrent P2P system. Our analysis formed
resilient, usable service for low-latency, interactiveelnet  communities based only on the fact that two P2P users es-
tasks such as Web browsing and SSH sessions. Howeveagblished a network connection. While this simple approach
attempts to integrate Tor into P2P systems has significantlgtill reveals strong community structure in BitTorrenttri
reduced global Tor performance to the detriment of non-connection information can further enhance the statistica
P2P users [26]. Recently, BitBlender [2] has been proposedignificance of detected communities. For example, one can
for anonymizing BitTorrent, but their approach relies onconstruct graphs that weight edges according to the number
open routers to forward BitTorrent traffic without incemss  of times two users connect, the duration of the connections
for participation. Unlike these solutions, which focus onand the amount of data transferred. Similarly, one can
hiding senders and receivers of data, our approach hidesaccount for patterns in connection behavior over time when
user’s communities of interest, which does not itself regjui forming communities. For example, users that connect
hiding senders and receivers. to each other at regular intervals are more susceptible to
An alternative to anonymity in open networks is trustedclassification. We are currently investigating these atspec
identities in private (i.e., closed) networks [22,29]. The of community analysis; defenses against them are part of
advantage to private networks is that they provide end-toeur future work.
end communication over trusted and encrypted channels, SwarmScreen enhances privacy by defending against the
preventing attackers from identifying the senders, remsiv  guilt-by-association attack enabled by community striectu
or content being transferred. A disadvantage is that, anlikin BitTorrent networks. It is important to note that an
open networks, availability of content and bandwidth isexplicit nongoal of our approach is anonymity. Rather, we
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focus on the goals of disrupting community detection and10]
providing users plausible deniability, as defined in Sec. 4,
when assigned to a community. However, we make no
claim about how our approach satisfies the legal definition&! ]
of these goals.

Privacy in the Internet has become a critical issue, with[12
notable catalysts such as identity theft and government
eavesdropping on network communications. In this pa-
per, we focused on the BitTorrent P2P protocol becausgi3]
community structure in this network is not expected aji14]
priori. We believe that the related guilt-by-association
attack is relevant in many other P2P systems, especially
where community structure is imposed by the semantics offt°]
the network (e.g., in a friend-to-friend network).

[16]
9 Conclusion

[17]
As P2P systems grow in size and popularity, privacy be-
comes an increasingly important — and challenging — goal to
achieve. In this paper, we analyzed connection informationig;
from real users in the BitTorrent network and revealed
strong communities of shared interest. We showed that
this information can be exploited by an attacker to classifyl1°]
large numbers of users with relatively little monitoring.
To address this threat, we designed and implemented @0]
strategy to disrupt attempts to classify users. As part of ou
future work, we are exploring other privacy threats based on
connection behavior in P2P systems and defenses against
them. [21]
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